Goto

Collaborating Authors

 Guan, Xinping


Enlighten-Your-Voice: When Multimodal Meets Zero-shot Low-light Image Enhancement

arXiv.org Artificial Intelligence

Low-light image enhancement is a crucial visual task, and many unsupervised methods tend to overlook the degradation of visible information in low-light scenes, which adversely affects the fusion of complementary information and hinders the generation of satisfactory results. To address this, our study introduces "Enlighten-Your-Voice", a multimodal enhancement framework that innovatively enriches user interaction through voice and textual commands. This approach does not merely signify a technical leap but also represents a paradigm shift in user engagement. Our model is equipped with a Dual Collaborative Attention Module (DCAM) that meticulously caters to distinct content and color discrepancies, thereby facilitating nuanced enhancements. Complementarily, we introduce a Semantic Feature Fusion (SFM) plug-and-play module that synergizes semantic context with low-light enhancement operations, sharpening the algorithm's efficacy. Crucially, "Enlighten-Your-Voice" showcases remarkable generalization in unsupervised zero-shot scenarios. The source code can be accessed from https://github.com/zhangbaijin/Enlighten-Your-Voice


Preserving Topology of Network Systems: Metric, Analysis, and Optimal Design

arXiv.org Artificial Intelligence

Preserving the topology from being inferred by external adversaries has become a paramount security issue for network systems (NSs), and adding random noises to the nodal states provides a promising way. Nevertheless, recent works have revealed that the topology cannot be preserved under i.i.d. noises in the asymptotic sense. How to effectively characterize the non-asymptotic preservation performance still remains an open issue. Inspired by the deviation quantification of concentration inequalities, this paper proposes a novel metric named trace-based variance-expectation ratio. This metric effectively captures the decaying rate of the topology inference error, where a slower rate indicates better non-asymptotic preservation performance. We prove that the inference error will always decay to zero asymptotically, as long as the added noises are non-increasing and independent (milder than the i.i.d. condition). Then, the optimal noise design that produces the slowest decaying rate for the error is obtained. More importantly, we amend the noise design by introducing one-lag time dependence, achieving the zero state deviation and the non-zero topology inference error in the asymptotic sense simultaneously. Extensions to a general class of noises with multi-lag time dependence are provided. Comprehensive simulations verify the theoretical findings.


Inferring Topology of Networked Dynamical Systems by Active Excitations

arXiv.org Artificial Intelligence

Topology inference for networked dynamical systems (NDSs) has received considerable attention in recent years. The majority of pioneering works have dealt with inferring the topology from abundant observations of NDSs, so as to approximate the real one asymptotically. Leveraging the characteristic that NDSs will react to various disturbances and the disturbance's influence will consistently spread, this paper focuses on inferring the topology by a few active excitations. The key challenge is to distinguish different influences of system noises and excitations from the exhibited state deviations, where the influences will decay with time and the exciatation cannot be arbitrarily large. To practice, we propose a one-shot excitation based inference method to infer $h$-hop neighbors of a node. The excitation conditions for accurate one-hop neighbor inference are first derived with probability guarantees. Then, we extend the results to $h$-hop neighbor inference and multiple excitations cases, providing the explicit relationships between the inference accuracy and excitation magnitude. Specifically, the excitation based inference method is not only suitable for scenarios where abundant observations are unavailable, but also can be leveraged as auxiliary means to improve the accuracy of existing methods. Simulations are conducted to verify the analytical results.