Guan, Chaofeng
Dynamic Token Reduction during Generation for Vision Language Models
Liang, Xiaoyu, Guan, Chaofeng, Lu, Jiaying, Chen, Huiyao, Wang, Huan, Hu, Haoji
Vision-Language Models (VLMs) have achieved notable success in multimodal tasks but face practical limitations due to the quadratic complexity of decoder attention mechanisms and autoregressive generation. Existing methods like FASTV and VTW have achieved notable results in reducing redundant visual tokens, but these approaches focus on pruning tokens in a single forward pass without systematically analyzing the redundancy of visual tokens throughout the entire generation process. In this paper, we introduce a dynamic pruning strategy tailored for VLMs, namedDynamic Rate (DyRate), which progressively adjusts the compression rate during generation. Our analysis of the distribution of attention reveals that the importance of visual tokens decreases throughout the generation process, inspiring us to adopt a more aggressive compression rate. By integrating a lightweight predictor based on attention distribution, our approach enables flexible adjustment of pruning rates based on the attention distribution. Our experimental results demonstrate that our method not only reduces computational demands but also maintains the quality of responses.
Minstrel: Structural Prompt Generation with Multi-Agents Coordination for Non-AI Experts
Wang, Ming, Liu, Yuanzhong, Liang, Xiaoyu, Huang, Yijie, Wang, Daling, Yang, Xiaocui, Shen, Sijia, Feng, Shi, Zhang, Xiaoming, Guan, Chaofeng, Zhang, Yifei
LLMs have demonstrated commendable performance across diverse domains. Nevertheless, formulating high-quality prompts to assist them in their work poses a challenge for non-AI experts. Existing research in prompt engineering suggests somewhat scattered optimization principles and designs empirically dependent prompt optimizers. Unfortunately, these endeavors lack a structural design, incurring high learning costs and it is not conducive to the iterative updating of prompts, especially for non-AI experts. Inspired by structured reusable programming languages, we propose LangGPT, a structural prompt design framework. Furthermore, we introduce Minstrel, a multi-generative agent system with reflection to automate the generation of structural prompts. Experiments and the case study illustrate that structural prompts generated by Minstrel or written manually significantly enhance the performance of LLMs. Furthermore, we analyze the ease of use of structural prompts through a user survey in our online community.