Gu, Yujie
Privacy-Preserving Heterogeneous Federated Learning for Sensitive Healthcare Data
Xu, Yukai, Zhang, Jingfeng, Gu, Yujie
In the realm of healthcare where decentralized facilities are prevalent, machine learning faces two major challenges concerning the protection of data and models. The data-level challenge concerns the data privacy leakage when centralizing data with sensitive personal information. While the model-level challenge arises from the heterogeneity of local models, which need to be collaboratively trained while ensuring their confidentiality to address intellectual property concerns. To tackle these challenges, we propose a new framework termed Abstention-Aware Federated Voting (AAFV) that can collaboratively and confidentially train heterogeneous local models while simultaneously protecting the data privacy. This is achieved by integrating a novel abstention-aware voting mechanism and a differential privacy mechanism onto local models' predictions. In particular, the proposed abstention-aware voting mechanism exploits a threshold-based abstention method to select high-confidence votes from heterogeneous local models, which not only enhances the learning utility but also protects model confidentiality. Furthermore, we implement AAFV on two practical prediction tasks of diabetes and in-hospital patient mortality. The experiments demonstrate the effectiveness and confidentiality of AAFV in testing accuracy and privacy protection.
DPDR: Gradient Decomposition and Reconstruction for Differentially Private Deep Learning
Liu, Yixuan, Xiong, Li, Liu, Yuhan, Gu, Yujie, Liu, Ruixuan, Chen, Hong
Differentially Private Stochastic Gradients Descent (DP-SGD) is a prominent paradigm for preserving privacy in deep learning. It ensures privacy by perturbing gradients with random noise calibrated to their entire norm at each training step. However, this perturbation suffers from a sub-optimal performance: it repeatedly wastes privacy budget on the general converging direction shared among gradients from different batches, which we refer as common knowledge, yet yields little information gain. Motivated by this, we propose a differentially private training framework with early gradient decomposition and reconstruction (DPDR), which enables more efficient use of the privacy budget. In essence, it boosts model utility by focusing on incremental information protection and recycling the privatized common knowledge learned from previous gradients at early training steps. Concretely, DPDR incorporates three steps. First, it disentangles common knowledge and incremental information in current gradients by decomposing them based on previous noisy gradients. Second, most privacy budget is spent on protecting incremental information for higher information gain. Third, the model is updated with the gradient reconstructed from recycled common knowledge and noisy incremental information. Theoretical analysis and extensive experiments show that DPDR outperforms state-of-the-art baselines on both convergence rate and accuracy.
The Impact of Prompts on Zero-Shot Detection of AI-Generated Text
Taguchi, Kaito, Gu, Yujie, Sakurai, Kouichi
In recent years, there have been significant advancements in the development of Large Language Models (LLMs). While their practical applications are now widespread, their potential for misuse, such as generating fake news and committing plagiarism, has posed significant concerns. To address this issue, detectors have been developed to evaluate whether a given text is human-generated or AI-generated. Among others, zero-shot detectors stand out as effective approaches that do not require additional training data and are often likelihood-based. In chat-based applications, users commonly input prompts and utilize the AI-generated texts. However, zero-shot detectors typically analyze these texts in isolation, neglecting the impact of the original prompts. It is conceivable that this approach may lead to a discrepancy in likelihood assessments between the text generation phase and the detection phase. So far, there remains an unverified gap concerning how the presence or absence of prompts impacts detection accuracy for zero-shot detectors. In this paper, we introduce an evaluative framework to empirically analyze the impact of prompts on the detection accuracy of AI-generated text. We assess various zero-shot detectors using both white-box detection, which leverages the prompt, and black-box detection, which operates without prompt information. Our experiments reveal the significant influence of prompts on detection accuracy. Remarkably, compared with black-box detection without prompts, the white-box methods using prompts demonstrate an increase in AUC of at least $0.1$ across all zero-shot detectors tested. Code is available: \url{https://github.com/kaito25atugich/Detector}.
TernaryVote: Differentially Private, Communication Efficient, and Byzantine Resilient Distributed Optimization on Heterogeneous Data
Jin, Richeng, Gu, Yujie, Yue, Kai, He, Xiaofan, Zhang, Zhaoyang, Dai, Huaiyu
Distributed training of deep neural networks faces three critical challenges: privacy preservation, communication efficiency, and robustness to fault and adversarial behaviors. Although significant research efforts have been devoted to addressing these challenges independently, their synthesis remains less explored. In this paper, we propose TernaryVote, which combines a ternary compressor and the majority vote mechanism to realize differential privacy, gradient compression, and Byzantine resilience simultaneously. We theoretically quantify the privacy guarantee through the lens of the emerging f-differential privacy (DP) and the Byzantine resilience of the proposed algorithm. Particularly, in terms of privacy guarantees, compared to the existing sign-based approach StoSign, the proposed method improves the dimension dependence on the gradient size and enjoys privacy amplification by mini-batch sampling while ensuring a comparable convergence rate. We also prove that TernaryVote is robust when less than 50% of workers are blind attackers, which matches that of SIGNSGD with majority vote. Extensive experimental results validate the effectiveness of the proposed algorithm.