Goto

Collaborating Authors

 Gu, Yu


Force Aware Branch Manipulation To Assist Agricultural Tasks

arXiv.org Artificial Intelligence

This study presents a methodology to safely manipulate branches to aid various agricultural tasks. Humans in a real agricultural environment often manipulate branches to perform agricultural tasks effectively, but current agricultural robots lack this capability. This proposed strategy to manipulate branches can aid in different precision agriculture tasks, such as fruit picking in dense foliage, pollinating flowers under occlusion, and moving overhanging vines and branches for navigation. The proposed method modifies RRT* to plan a path that satisfies the branch geometric constraints and obeys branch deformable characteristics. Re-planning is done to obtain a path that helps the robot exert force within a desired range so that branches are not damaged during manipulation. Experimentally, this method achieved a success rate of 78% across 50 trials, successfully moving a branch from different starting points to a target region.


FloPE: Flower Pose Estimation for Precision Pollination

arXiv.org Artificial Intelligence

This study presents Flower Pose Estimation (FloPE), a real-time flower pose estimation framework for computationally constrained robotic pollination systems. Robotic pollination has been proposed to supplement natural pollination to ensure global food security due to the decreased population of natural pollinators. However, flower pose estimation for pollination is challenging due to natural variability, flower clusters, and high accuracy demands due to the flowers' fragility when pollinating. This method leverages 3D Gaussian Splatting to generate photorealistic synthetic datasets with precise pose annotations, enabling effective knowledge distillation from a high-capacity teacher model to a lightweight student model for efficient inference. The approach was evaluated on both single and multi-arm robotic platforms, achieving a mean pose estimation error of 0.6 cm and 19.14 degrees within a low computational cost. Our experiments validate the effectiveness of FloPE, achieving up to 78.75% pollination success rate and outperforming prior robotic pollination techniques.


LLM-QE: Improving Query Expansion by Aligning Large Language Models with Ranking Preferences

arXiv.org Artificial Intelligence

Query expansion plays a crucial role in information retrieval, which aims to bridge the semantic gap between queries and documents to improve matching performance. This paper introduces LLM-QE, a novel approach that leverages Large Language Models (LLMs) to generate document-based query expansions, thereby enhancing dense retrieval models. Unlike traditional methods, LLM-QE designs both rank-based and answer-based rewards and uses these reward models to optimize LLMs to align with the ranking preferences of both retrievers and LLMs, thus mitigating the hallucination of LLMs during query expansion. Our experiments on the zero-shot dense retrieval model, Contriever, demonstrate the effectiveness of LLM-QE, achieving an improvement of over 8%. Furthermore, by incorporating answer-based reward modeling, LLM-QE generates more relevant and precise information related to the documents, rather than simply producing redundant tokens to maximize rank-based rewards. Notably, LLM-QE also improves the training process of dense retrievers, achieving a more than 5% improvement after fine-tuning. All codes are available at https://github.com/NEUIR/LLM-QE.


RankCoT: Refining Knowledge for Retrieval-Augmented Generation through Ranking Chain-of-Thoughts

arXiv.org Artificial Intelligence

Retrieval-Augmented Generation (RAG) enhances the performance of Large Language Models (LLMs) by incorporating external knowledge. However, LLMs still encounter challenges in effectively utilizing the knowledge from retrieved documents, often being misled by irrelevant or noisy information. To address this issue, we introduce RankCoT, a knowledge refinement method that incorporates reranking signals in generating CoT-based summarization for knowledge refinement based on given query and all retrieval documents. During training, RankCoT prompts the LLM to generate Chain-of-Thought (CoT) candidates based on the query and individual documents. It then fine-tunes the LLM to directly reproduce the best CoT from these candidate outputs based on all retrieved documents, which requires LLM to filter out irrelevant documents during generating CoT-style summarization. Additionally, RankCoT incorporates a self-reflection mechanism that further refines the CoT outputs, resulting in higher-quality training data. Our experiments demonstrate the effectiveness of RankCoT, showing its superior performance over other knowledge refinement models. Further analysis reveals that RankCoT can provide shorter but effective refinement results, enabling the generator to produce more accurate answers. All code and data are available at https://github.com/NEUIR/RankCoT.


Benchmarking Retrieval-Augmented Generation in Multi-Modal Contexts

arXiv.org Artificial Intelligence

This paper introduces Multi-Modal Retrieval-Augmented Generation (M^2RAG), a benchmark designed to evaluate the effectiveness of Multi-modal Large Language Models (MLLMs) in leveraging knowledge from multi-modal retrieval documents. The benchmark comprises four tasks: image captioning, multi-modal question answering, multi-modal fact verification, and image reranking. All tasks are set in an open-domain setting, requiring RAG models to retrieve query-relevant information from a multi-modal document collection and use it as input context for RAG modeling. To enhance the context utilization capabilities of MLLMs, we also introduce Multi-Modal Retrieval-Augmented Instruction Tuning (MM-RAIT), an instruction tuning method that optimizes MLLMs within multi-modal contexts. Our experiments show that MM-RAIT improves the performance of RAG systems by enabling them to effectively learn from multi-modal contexts. All data and code are available at https://github.com/NEUIR/M2RAG.


HIPPO: Enhancing the Table Understanding Capability of Large Language Models through Hybrid-Modal Preference Optimization

arXiv.org Artificial Intelligence

Tabular data contains rich structural semantics and plays a crucial role in organizing and manipulating information. To better capture these structural semantics, this paper introduces the HybrId-modal Preference oPtimizatiOn (HIPPO) model, which represents tables using both text and image, and optimizes MLLMs to effectively learn more comprehensive table information from these multiple modalities. Specifically, HIPPO samples model responses from hybrid-modal table representations and designs a modality-consistent sampling strategy to enhance response diversity and mitigate modality bias during DPO training. Experimental results on table question answering and table fact verification tasks demonstrate the effectiveness of HIPPO, achieving a 4% improvement over various table reasoning models. Further analysis reveals that HIPPO not only enhances reasoning abilities based on unimodal table representations but also facilitates the extraction of crucial and distinct semantics from different modal representations. All data and codes are available at https://github.com/NEUIR/HIPPO.


Magma: A Foundation Model for Multimodal AI Agents

arXiv.org Artificial Intelligence

We present Magma, a foundation model that serves multimodal AI agentic tasks in both the digital and physical worlds. Magma is a significant extension of vision-language (VL) models in that it not only retains the VL understanding ability (verbal intelligence) of the latter, but is also equipped with the ability to plan and act in the visual-spatial world (spatial-temporal intelligence) and complete agentic tasks ranging from UI navigation to robot manipulation. To endow the agentic capabilities, Magma is pretrained on large amounts of heterogeneous datasets spanning from images, videos to robotics data, where the actionable visual objects (e.g., clickable buttons in GUI) in images are labeled by Set-of-Mark (SoM) for action grounding, and the object movements (e.g., the trace of human hands or robotic arms) in videos are labeled by Trace-of-Mark (ToM) for action planning. Extensive experiments show that SoM and ToM reach great synergy and facilitate the acquisition of spatial-temporal intelligence for our Magma model, which is fundamental to a wide range of tasks as shown in Fig.1. In particular, Magma creates new state-of-the-art results on UI navigation and robotic manipulation tasks, outperforming previous models that are specifically tailored to these tasks. On image and video-related multimodal tasks, Magma also compares favorably to popular large multimodal models that are trained on much larger datasets. We make our model and code public for reproducibility at https://microsoft.github.io/Magma.


SimSort: A Powerful Framework for Spike Sorting by Large-Scale Electrophysiology Simulation

arXiv.org Artificial Intelligence

Spike sorting is an essential process in neural recording, which identifies and separates electrical signals from individual neurons recorded by electrodes in the brain, enabling researchers to study how specific neurons communicate and process information. Although there exist a number of spike sorting methods which have contributed to significant neuroscientific breakthroughs, many are heuristically designed, making it challenging to verify their correctness due to the difficulty of obtaining ground truth labels from real-world neural recordings. In this work, we explore a data-driven, deep learning-based approach. We begin by creating a large-scale dataset through electrophysiology simulations using biologically realistic computational models. We then present \textbf{SimSort}, a pretraining framework for spike sorting. Remarkably, when trained on our simulated dataset, SimSort demonstrates strong zero-shot generalization to real-world spike sorting tasks, significantly outperforming existing methods. Our findings underscore the potential of data-driven techniques to enhance the reliability and scalability of spike sorting in experimental neuroscience.


Universal Abstraction: Harnessing Frontier Models to Structure Real-World Data at Scale

arXiv.org Artificial Intelligence

The vast majority of real-world patient information resides in unstructured clinical text, and the process of medical abstraction seeks to extract and normalize structured information from this unstructured input. However, traditional medical abstraction methods can require significant manual efforts that can include crafting rules or annotating training labels, limiting scalability. In this paper, we propose UniMedAbstractor (UMA), a zero-shot medical abstraction framework leveraging Large Language Models (LLMs) through a modular and customizable prompt template. We refer to our approach as universal abstraction as it can quickly scale to new attributes through its universal prompt template without curating attribute-specific training labels or rules. We evaluate UMA for oncology applications, focusing on fifteen key attributes representing the cancer patient journey, from short-context attributes (e.g., performance status, treatment) to complex long-context attributes requiring longitudinal reasoning (e.g., tumor site, histology, TNM staging). Experiments on real-world data show UMA's strong performance and generalizability. Compared to supervised and heuristic baselines, UMA with GPT-4o achieves on average an absolute 2-point F1/accuracy improvement for both short-context and long-context attribute abstraction. For pathologic T staging, UMA even outperforms the supervised model by 20 points in accuracy.


XKV: Personalized KV Cache Memory Reduction for Long-Context LLM Inference

arXiv.org Artificial Intelligence

Recently the generative Large Language Model (LLM) has achieved remarkable success in numerous applications. Notably its inference generates output tokens one-by-one, leading to many redundant computations. The widely-used KV-Cache framework makes a compromise between time and space complexities. However, caching data generates the increasingly growing memory demand, that can quickly exhaust the limited memory capacity of the modern accelerator like GPUs, particularly in long-context inference tasks. Existing studies reduce memory consumption by evicting some of cached data that have less important impact on inference accuracy. But the benefit in practice is far from ideal due to the static cache allocation across different LLM network layers. This paper observes that the layer-specific cached data have very different impacts on accuracy. We quantify this difference, and give experimental and theoretical validation. We accordingly make a formal analysis and shows that customizing the cache size for each layer in a personalized manner can yield a significant memory reduction, while still providing comparable accuracy. We simulate the cache allocation as a combinatorial optimization problem and give a global optimal solution. In particular, we devise a mini- and sampling-based inference over a lightweight variant of the LLM model, so as to quickly capture the difference and then feed it into the personalized algorithms. Extensive experiments on real-world datasets demonstrate that our proposals can reduce KV cache memory consumption by 61.6% on average, improve computational efficiency by 2.1x and then increase the throughput by up to 5.5x.