Goto

Collaborating Authors

 Gu, Xiaodong


AttentionRAG: Attention-Guided Context Pruning in Retrieval-Augmented Generation

arXiv.org Artificial Intelligence

While RAG demonstrates remarkable capabilities in LLM applications, its effectiveness is hindered by the ever-increasing length of retrieved contexts, which introduces information redundancy and substantial computational overhead. Existing context pruning methods, such as LLMLingua, lack contextual awareness and offer limited flexibility in controlling compression rates, often resulting in either insufficient pruning or excessive information loss. In this paper, we propose AttentionRAG, an attention-guided context pruning method for RAG systems. The core idea of AttentionRAG lies in its attention focus mechanism, which reformulates RAG queries into a next-token prediction paradigm. This mechanism isolates the query's semantic focus to a single token, enabling precise and efficient attention calculation between queries and retrieved contexts. Extensive experiments on LongBench and Babilong benchmarks show that AttentionRAG achieves up to 6.3$\times$ context compression while outperforming LLMLingua methods by around 10\% in key metrics.


LHM: Large Animatable Human Reconstruction Model from a Single Image in Seconds

arXiv.org Artificial Intelligence

Animatable 3D human reconstruction from a single image is a challenging problem due to the ambiguity in decoupling geometry, appearance, and deformation. Recent advances in 3D human reconstruction mainly focus on static human modeling, and the reliance of using synthetic 3D scans for training limits their generalization ability. Conversely, optimization-based video methods achieve higher fidelity but demand controlled capture conditions and computationally intensive refinement processes. Motivated by the emergence of large reconstruction models for efficient static reconstruction, we propose LHM (Large Animatable Human Reconstruction Model) to infer high-fidelity avatars represented as 3D Gaussian splatting in a feed-forward pass. Our model leverages a multimodal transformer architecture to effectively encode the human body positional features and image features with attention mechanism, enabling detailed preservation of clothing geometry and texture. To further boost the face identity preservation and fine detail recovery, we propose a head feature pyramid encoding scheme to aggregate multi-scale features of the head regions. Extensive experiments demonstrate that our LHM generates plausible animatable human in seconds without post-processing for face and hands, outperforming existing methods in both reconstruction accuracy and generalization ability.


MMRL: Multi-Modal Representation Learning for Vision-Language Models

arXiv.org Artificial Intelligence

Large-scale pre-trained Vision-Language Models (VLMs) have become essential for transfer learning across diverse tasks. However, adapting these models with limited few-shot data often leads to overfitting, diminishing their performance on new tasks. To tackle this issue, we propose a novel Multi-Modal Representation Learning (MMRL) framework that introduces a shared, learnable, and modality-agnostic representation space. MMRL projects the space tokens to text and image representation tokens, facilitating more effective multi-modal interactions. Unlike previous approaches that solely optimize class token features, MMRL integrates representation tokens at higher layers of the encoders--where dataset-specific features are more prominent--while preserving generalized knowledge in the lower layers. During training, both representation and class features are optimized, with trainable projection layer applied to the representation tokens, whereas the class token projection layer remains frozen to retain pre-trained knowledge. Furthermore, a regularization term is introduced to align the class features and text features with the zero-shot features from the frozen VLM, thereby safeguarding the model's generalization capacity. For inference, a decoupling strategy is employed, wherein both representation and class features are utilized for base classes, while only the class features, which retain more generalized knowledge, are used for new tasks. Extensive experiments across 15 datasets demonstrate that MMRL outperforms state-of-the-art methods, achieving a balanced trade-off between task-specific adaptation and generalization. Code is available at https://github.com/yunncheng/MMRL.


AniGS: Animatable Gaussian Avatar from a Single Image with Inconsistent Gaussian Reconstruction

arXiv.org Artificial Intelligence

Generating animatable human avatars from a single image is essential for various digital human modeling applications. Existing 3D reconstruction methods often struggle to capture fine details in animatable models, while generative approaches for controllable animation, though avoiding explicit 3D modeling, suffer from viewpoint inconsistencies in extreme poses and computational inefficiencies. In this paper, we address these challenges by leveraging the power of generative models to produce detailed multi-view canonical pose images, which help resolve ambiguities in animatable human reconstruction. We then propose a robust method for 3D reconstruction of inconsistent images, enabling real-time rendering during inference. Specifically, we adapt a transformer-based video generation model to generate multi-view canonical pose images and normal maps, pretraining on a large-scale video dataset to improve generalization. To handle view inconsistencies, we recast the reconstruction problem as a 4D task and introduce an efficient 3D modeling approach using 4D Gaussian Splatting. Experiments demonstrate that our method achieves photorealistic, real-time animation of 3D human avatars from in-the-wild images, showcasing its effectiveness and generalization capability.


MVImgNet2.0: A Larger-scale Dataset of Multi-view Images

arXiv.org Artificial Intelligence

MVImgNet is a large-scale dataset that contains multi-view images of ~220k real-world objects in 238 classes. As a counterpart of ImageNet, it introduces 3D visual signals via multi-view shooting, making a soft bridge between 2D and 3D vision. This paper constructs the MVImgNet2.0 dataset that expands MVImgNet into a total of ~520k objects and 515 categories, which derives a 3D dataset with a larger scale that is more comparable to ones in the 2D domain. In addition to the expanded dataset scale and category range, MVImgNet2.0 is of a higher quality than MVImgNet owing to four new features: (i) most shoots capture 360-degree views of the objects, which can support the learning of object reconstruction with completeness; (ii) the segmentation manner is advanced to produce foreground object masks of higher accuracy; (iii) a more powerful structure-from-motion method is adopted to derive the camera pose for each frame of a lower estimation error; (iv) higher-quality dense point clouds are reconstructed via advanced methods for objects captured in 360-degree views, which can serve for downstream applications. Extensive experiments confirm the value of the proposed MVImgNet2.0 in boosting the performance of large 3D reconstruction models. MVImgNet2.0 will be public at luyues.github.io/mvimgnet2, including multi-view images of all 520k objects, the reconstructed high-quality point clouds, and data annotation codes, hoping to inspire the broader vision community.


LLMs as Continuous Learners: Improving the Reproduction of Defective Code in Software Issues

arXiv.org Artificial Intelligence

Reproducing buggy code is the first and crucially important step in issue resolving, as it aids in identifying the underlying problems and validating that generated patches resolve the problem. While numerous approaches have been proposed for this task, they primarily address common, widespread errors and struggle to adapt to unique, evolving errors specific to individual code repositories. To fill this gap, we propose EvoCoder, a multi-agent continuous learning framework for issue code reproduction. EvoCoder adopts a reflection mechanism that allows the LLM to continuously learn from previously resolved problems and dynamically refine its strategies to new emerging challenges. To prevent experience bloating, EvoCoder introduces a novel hierarchical experience pool that enables the model to adaptively update common and repo-specific experiences. Our experimental results show a 20\% improvement in issue reproduction rates over existing SOTA methods. Furthermore, integrating our reproduction mechanism significantly boosts the overall accuracy of the existing issue-resolving pipeline.


Just-In-Time Software Defect Prediction via Bi-modal Change Representation Learning

arXiv.org Artificial Intelligence

For predicting software defects at an early stage, researchers have proposed just-in-time defect prediction (JIT-DP) to identify potential defects in code commits. The prevailing approaches train models to represent code changes in history commits and utilize the learned representations to predict the presence of defects in the latest commit. However, existing models merely learn editions in source code, without considering the natural language intentions behind the changes. This limitation hinders their ability to capture deeper semantics. To address this, we introduce a novel bi-modal change pre-training model called BiCC-BERT. BiCC-BERT is pre-trained on a code change corpus to learn bi-modal semantic representations. To incorporate commit messages from the corpus, we design a novel pre-training objective called Replaced Message Identification (RMI), which learns the semantic association between commit messages and code changes. Subsequently, we integrate BiCC-BERT into JIT-DP and propose a new defect prediction approach -- JIT-BiCC. By leveraging the bi-modal representations from BiCC-BERT, JIT-BiCC captures more profound change semantics. We train JIT-BiCC using 27,391 code changes and compare its performance with 8 state-of-the-art JIT-DP approaches. The results demonstrate that JIT-BiCC outperforms all baselines, achieving a 10.8% improvement in F1-score. This highlights its effectiveness in learning the bi-modal semantics for JIT-DP.


CodeCipher: Learning to Obfuscate Source Code Against LLMs

arXiv.org Artificial Intelligence

While large code language models have made significant strides in AI-assisted coding tasks, there are growing concerns about privacy challenges. The user code is transparent to the cloud LLM service provider, inducing risks of unauthorized training, reading, and execution of the user code. In this paper, we propose CodeCipher, a novel method that perturbs privacy from code while preserving the original response from LLMs. CodeCipher transforms the LLM's embedding matrix so that each row corresponds to a different word in the original matrix, forming a token-to-token confusion mapping for obfuscating source code. The new embedding matrix is optimized by minimizing the task-specific loss function. To tackle the challenge of the discrete and sparse nature of word vector spaces, CodeCipher adopts a discrete optimization strategy that aligns the updated vector to the nearest valid token in the vocabulary before each gradient update. We demonstrate the effectiveness of our approach on three AI-assisted coding tasks including code completion, summarization, and translation. Results show that our model successfully confuses the privacy in source code while preserving the original LLM's performance.


From Code to Correctness: Closing the Last Mile of Code Generation with Hierarchical Debugging

arXiv.org Artificial Intelligence

While large language models have made significant strides in code generation, the pass rate of the generated code is bottlenecked on subtle errors, often requiring human intervention to pass tests, especially for complex problems. Existing LLM-based debugging systems treat generated programs as monolithic units, failing to address bugs at multiple levels of granularity, from low-level syntax errors to high-level algorithmic flaws. In this paper, we introduce Multi-Granularity Debugger (MGDebugger), a hierarchical code debugger by isolating, identifying, and resolving bugs at various levels of granularity. MGDebugger decomposes problematic code into a hierarchical tree structure of subfunctions, with each level representing a particular granularity of error. During debugging, it analyzes each subfunction and iteratively resolves bugs in a bottom-up manner. To effectively test each subfunction, we propose an LLM-simulated Python executor, which traces code execution and tracks important variable states to pinpoint errors accurately. Extensive experiments demonstrate that MGDebugger outperforms existing debugging systems, achieving an 18.9% improvement in accuracy over seed generations in HumanEval and a 97.6% repair success rate in HumanEvalFix. Furthermore, MGDebugger effectively fixes bugs across different categories and difficulty levels, demonstrating its robustness and effectiveness.


StableNormal: Reducing Diffusion Variance for Stable and Sharp Normal

arXiv.org Artificial Intelligence

This work addresses the challenge of high-quality surface normal estimation from monocular colored inputs (i.e., images and videos), a field which has recently been revolutionized by repurposing diffusion priors. However, previous attempts still struggle with stochastic inference, conflicting with the deterministic nature of the Image2Normal task, and costly ensembling step, which slows down the estimation process. Our method, StableNormal, mitigates the stochasticity of the diffusion process by reducing inference variance, thus producing "Stable-and-Sharp" normal estimates without any additional ensembling process. StableNormal works robustly under challenging imaging conditions, such as extreme lighting, blurring, and low quality. It is also robust against transparent and reflective surfaces, as well as cluttered scenes with numerous objects. Specifically, StableNormal employs a coarse-to-fine strategy, which starts with a one-step normal estimator (YOSO) to derive an initial normal guess, that is relatively coarse but reliable, then followed by a semantic-guided refinement process (SG-DRN) that refines the normals to recover geometric details. The effectiveness of StableNormal is demonstrated through competitive performance in standard datasets such as DIODE-indoor, iBims, ScannetV2 and NYUv2, and also in various downstream tasks, such as surface reconstruction and normal enhancement. These results evidence that StableNormal retains both the "stability" and "sharpness" for accurate normal estimation. StableNormal represents a baby attempt to repurpose diffusion priors for deterministic estimation. To democratize this, code and models have been publicly available in hf.co/Stable-X