Goto

Collaborating Authors

 Gu, Shuo


External Large Foundation Model: How to Efficiently Serve Trillions of Parameters for Online Ads Recommendation

arXiv.org Artificial Intelligence

Ads recommendation is a prominent service of online advertising systems and has been actively studied. Recent studies indicate that scaling-up and advanced design of the recommendation model can bring significant performance improvement. However, with a larger model scale, such prior studies have a significantly increasing gap from industry as they often neglect two fundamental challenges in industrial-scale applications. First, training and inference budgets are restricted for the model to be served, exceeding which may incur latency and impair user experience. Second, large-volume data arrive in a streaming mode with data distributions dynamically shifting, as new users/ads join and existing users/ads leave the system. We propose the External Large Foundation Model (ExFM) framework to address the overlooked challenges. Specifically, we develop external distillation and a data augmentation system (DAS) to control the computational cost of training/inference while maintaining high performance. We design the teacher in a way like a foundation model (FM) that can serve multiple students as vertical models (VMs) to amortize its building cost. We propose Auxiliary Head and Student Adapter to mitigate the data distribution gap between FM and VMs caused by the streaming data issue. Comprehensive experiments on internal industrial-scale applications and public datasets demonstrate significant performance gain by ExFM.


A Unified Knowledge-Distillation and Semi-Supervised Learning Framework to Improve Industrial Ads Delivery Systems

arXiv.org Artificial Intelligence

Industrial ads ranking systems conventionally rely on labeled impression data, which leads to challenges such as overfitting, slower incremental gain from model scaling, and biases due to discrepancies between training and serving data. To overcome these issues, we propose a Unified framework for Knowledge-Distillation and Semi-supervised Learning (UKDSL) for ads ranking, empowering the training of models on a significantly larger and more diverse datasets, thereby reducing overfitting and mitigating training-serving data discrepancies. We provide detailed formal analysis and numerical simulations on the inherent miscalibration and prediction bias of multi-stage ranking systems, and show empirical evidence of the proposed framework's capability to mitigate those. Compared to prior work, UKDSL can enable models to learn from a much larger set of unlabeled data, hence, improving the performance while being computationally efficient. Finally, we report the successful deployment of UKDSL in an industrial setting across various ranking models, serving users at multi-billion scale, across various surfaces, geological locations, clients, and optimize for various events, which to the best of our knowledge is the first of its kind in terms of the scale and efficiency at which it operates.


Semantics-Guided Moving Object Segmentation with 3D LiDAR

arXiv.org Artificial Intelligence

Moving object segmentation (MOS) is a task to distinguish moving objects, e.g., moving vehicles and pedestrians, from the surrounding static environment. The segmentation accuracy of MOS can have an influence on odometry, map construction, and planning tasks. In this paper, we propose a semantics-guided convolutional neural network for moving object segmentation. The network takes sequential LiDAR range images as inputs. Instead of segmenting the moving objects directly, the network conducts single-scan-based semantic segmentation and multiple-scan-based moving object segmentation in turn. The semantic segmentation module provides semantic priors for the MOS module, where we propose an adjacent scan association (ASA) module to convert the semantic features of adjacent scans into the same coordinate system to fully exploit the cross-scan semantic features. Finally, by analyzing the difference between the transformed features, reliable MOS result can be obtained quickly. Experimental results on the SemanticKITTI MOS dataset proves the effectiveness of our work.