Goto

Collaborating Authors

 Gu, Jie


Tackling Missing Values in Probabilistic Wind Power Forecasting: A Generative Approach

arXiv.org Artificial Intelligence

Machine learning techniques have been successfully used in probabilistic wind power forecasting. However, the issue of missing values within datasets due to sensor failure, for instance, has been overlooked for a long time. Although it is natural to consider addressing this issue by imputing missing values before model estimation and forecasting, we suggest treating missing values and forecasting targets indifferently and predicting all unknown values simultaneously based on observations. In this paper, we offer an efficient probabilistic forecasting approach by estimating the joint distribution of features and targets based on a generative model. It is free of preprocessing, and thus avoids introducing potential errors. Compared with the traditional "impute, then predict" pipeline, the proposed approach achieves better performance in terms of continuous ranked probability score.


Empowering General-purpose User Representation with Full-life Cycle Behavior Modeling

arXiv.org Artificial Intelligence

User Modeling plays an essential role in industry. In this field, task-agnostic approaches, which generate general-purpose representation applicable to diverse downstream user cognition tasks, is a promising direction being more valuable and economical than task-specific representation learning. With the rapid development of Internet service platforms, user behaviors have been accumulated continuously. However, existing general-purpose user representation researches have little ability for full-life cycle modeling on extremely long behavior sequences since user registration. In this study, we propose a novel framework called full- Life cycle User Representation Model (LURM) to tackle this challenge. Specifically, LURM consists of two cascaded sub-models: (I) Bag-of-Interests (BoI) encodes user behaviors in any time period into a sparse vector with super-high dimension (e.g., 10^5); (II) Self-supervised Multi-anchor Encoder Network (SMEN) maps sequences of BoI features to multiple low-dimensional user representations. Specially, SMEN achieves almost lossless dimensionality reduction, benefiting from a novel multi-anchor module which can learn different aspects of user interests. Experiments on several benchmark datasets show that our approach outperforms state-of-the-art general-purpose representation methods.


Continuous and Distribution-free Probabilistic Wind Power Forecasting: A Conditional Normalizing Flow Approach

arXiv.org Artificial Intelligence

We present a data-driven approach for probabilistic wind power forecasting based on conditional normalizing flow (CNF). In contrast with the existing, this approach is distribution-free (as for non-parametric and quantile-based approaches) and can directly yield continuous probability densities, hence avoiding quantile crossing. It relies on a base distribution and a set of bijective mappings. Both the shape parameters of the base distribution and the bijective mappings are approximated with neural networks. Spline-based conditional normalizing flow is considered owing to its non-affine characteristics. Over the training phase, the model sequentially maps input examples onto samples of base distribution, given the conditional contexts, where parameters are estimated through maximum likelihood. To issue probabilistic forecasts, one eventually maps samples of the base distribution into samples of a desired distribution. Case studies based on open datasets validate the effectiveness of the proposed model, and allows us to discuss its advantages and caveats with respect to the state of the art.


Exploiting Behavioral Consistence for Universal User Representation

arXiv.org Artificial Intelligence

User modeling is critical for developing personalized services in industry. A common way for user modeling is to learn user representations that can be distinguished by their interests or preferences. In this work, we focus on developing universal user representation model. The obtained universal representations are expected to contain rich information, and be applicable to various downstream applications without further modifications (e.g., user preference prediction and user profiling). Accordingly, we can be free from the heavy work of training task-specific models for every downstream task as in previous works. In specific, we propose Self-supervised User Modeling Network (SUMN) to encode behavior data into the universal representation. It includes two key components. The first one is a new learning objective, which guides the model to fully identify and preserve valuable user information under a self-supervised learning framework. The other one is a multi-hop aggregation layer, which benefits the model capacity in aggregating diverse behaviors. Extensive experiments on benchmark datasets show that our approach can outperform state-of-the-art unsupervised representation methods, and even compete with supervised ones.


Structure-Aware Convolutional Neural Networks

Neural Information Processing Systems

Convolutional neural networks (CNNs) are inherently subject to invariable filters that can only aggregate local inputs with the same topological structures. It causes that CNNs are allowed to manage data with Euclidean or grid-like structures (e.g., images), not ones with non-Euclidean or graph structures (e.g., traffic networks). To broaden the reach of CNNs, we develop structure-aware convolution to eliminate the invariance, yielding a unified mechanism of dealing with both Euclidean and non-Euclidean structured data. Technically, filters in the structure-aware convolution are generalized to univariate functions, which are capable of aggregating local inputs with diverse topological structures. Since infinite parameters are required to determine a univariate function, we parameterize these filters with numbered learnable parameters in the context of the function approximation theory.


Structure-Aware Convolutional Neural Networks

Neural Information Processing Systems

Convolutional neural networks (CNNs) are inherently subject to invariable filters that can only aggregate local inputs with the same topological structures. It causes that CNNs are allowed to manage data with Euclidean or grid-like structures (e.g., images), not ones with non-Euclidean or graph structures (e.g., traffic networks). To broaden the reach of CNNs, we develop structure-aware convolution to eliminate the invariance, yielding a unified mechanism of dealing with both Euclidean and non-Euclidean structured data. Technically, filters in the structure-aware convolution are generalized to univariate functions, which are capable of aggregating local inputs with diverse topological structures. Since infinite parameters are required to determine a univariate function, we parameterize these filters with numbered learnable parameters in the context of the function approximation theory. By replacing the classical convolution in CNNs with the structure-aware convolution, Structure-Aware Convolutional Neural Networks (SACNNs) are readily established. Extensive experiments on eleven datasets strongly evidence that SACNNs outperform current models on various machine learning tasks, including image classification and clustering, text categorization, skeleton-based action recognition, molecular activity detection, and taxi flow prediction.


Structure-Aware Convolutional Neural Networks

Neural Information Processing Systems

Convolutional neural networks (CNNs) are inherently subject to invariable filters that can only aggregate local inputs with the same topological structures. It causes that CNNs are allowed to manage data with Euclidean or grid-like structures (e.g., images), not ones with non-Euclidean or graph structures (e.g., traffic networks). To broaden the reach of CNNs, we develop structure-aware convolution to eliminate the invariance, yielding a unified mechanism of dealing with both Euclidean and non-Euclidean structured data. Technically, filters in the structure-aware convolution are generalized to univariate functions, which are capable of aggregating local inputs with diverse topological structures. Since infinite parameters are required to determine a univariate function, we parameterize these filters with numbered learnable parameters in the context of the function approximation theory. By replacing the classical convolution in CNNs with the structure-aware convolution, Structure-Aware Convolutional Neural Networks (SACNNs) are readily established. Extensive experiments on eleven datasets strongly evidence that SACNNs outperform current models on various machine learning tasks, including image classification and clustering, text categorization, skeleton-based action recognition, molecular activity detection, and taxi flow prediction.