Goto

Collaborating Authors

 Grossman, Tal


Use of Bad Training Data for Better Predictions

Neural Information Processing Systems

We show how randomly scrambling the output classes of various fractions of the training data may be used to improve predictive accuracy of a classification algorithm. We present a method for calculating the "noise sensitivity signature" of a learning algorithm which is based on scrambling the output classes. This signature can be used to indicate a good match between the complexity of the classifier and the complexity of the data. Use of noise sensitivity signatures is distinctly different from other schemes to avoid overtraining, such as cross-validation, which uses only part of the training data, or various penalty functions, which are not data-adaptive. Noise sensitivity signature methods use all of the training data and are manifestly data-adaptive and nonparametric. They are well suited for situations with limited training data. 1 INTRODUCTION A major problem of pattern recognition and classification algorithms that learn from a training set of examples is to select the complexity of the model to be trained. How is it possible to avoid an overparameterized algorithm from "memorizing" the training data?


Use of Bad Training Data for Better Predictions

Neural Information Processing Systems

We show how randomly scrambling the output classes of various fractions of the training data may be used to improve predictive accuracy of a classification algorithm. We present a method for calculating the "noise sensitivity signature" of a learning algorithm which is based on scrambling the output classes. This signature can be used to indicate a good match between the complexity of the classifier and the complexity of the data. Use of noise sensitivity signatures is distinctly different from other schemes to avoid overtraining, suchas cross-validation, which uses only part of the training data, or various penalty functions, which are not data-adaptive. Noise sensitivity signature methods use all of the training data and are manifestly data-adaptive and nonparametric.


The CHIR Algorithm for Feed Forward Networks with Binary Weights

Neural Information Processing Systems

A new learning algorithm, Learning by Choice of Internal Represetations (CHIR), was recently introduced. Whereas many algorithms reduce the learning process to minimizing a cost function over the weights, our method treats the internal representations as the fundamental entities to be determined. The algorithm applies a search procedure in the space of internal representations, and a cooperative adaptation of the weights (e.g. by using the perceptron learning rule). Since the introduction of its basic, single output version, the CHIR algorithm was generalized to train any feed forward network of binary neurons. Here we present the generalised version of the CHIR algorithm, and further demonstrate its versatility by describing how it can be modified in order to train networks with binary ( 1) weights. Preliminary tests of this binary version on the random teacher problem are also reported.


The CHIR Algorithm for Feed Forward Networks with Binary Weights

Neural Information Processing Systems

A new learning algorithm, Learning by Choice of Internal Represetations (CHIR),was recently introduced. Whereas many algorithms reduce the learning process to minimizing a cost function over the weights, our method treats the internal representations as the fundamental entities to be determined. The algorithm applies a search procedure in the space of internal representations, and a cooperative adaptation of the weights (e.g. by using the perceptron learning rule). Since the introduction of its basic, single output version, theCHIR algorithm was generalized to train any feed forward network of binary neurons. Here we present the generalised version of the CHIR algorithm, and further demonstrate its versatility by describing how it can be modified in order to train networks with binary ( 1) weights. Preliminary tests of this binary version on the random teacher problem are also reported.


Learning by Choice of Internal Representations

Neural Information Processing Systems

We introduce a learning algorithm for multilayer neural networks composed of binary linear threshold elements. Whereas existing algorithms reduce the learning process to minimizing a cost function over the weights, our method treats the internal representations as the fundamental entities to be determined. Once a correct set of internal representations is arrived at, the weights are found by the local aild biologically plausible Perceptron Learning Rule (PLR). We tested our learning algorithm on four problems: adjacency, symmetry, parity and combined symmetry-parity.


Learning by Choice of Internal Representations

Neural Information Processing Systems

We introduce a learning algorithm for multilayer neural networks composedof binary linear threshold elements. Whereas existing algorithms reduce the learning process to minimizing a cost function over the weights, our method treats the internal representations asthe fundamental entities to be determined. Once a correct set of internal representations is arrived at, the weights are found by the local aild biologically plausible Perceptron Learning Rule (PLR). We tested our learning algorithm on four problems: adjacency, symmetry, parity and combined symmetry-parity.


Learning by Choice of Internal Representations

Neural Information Processing Systems

We introduce a learning algorithm for multilayer neural networks composed of binary linear threshold elements. Whereas existing algorithms reduce the learning process to minimizing a cost function over the weights, our method treats the internal representations as the fundamental entities to be determined. Once a correct set of internal representations is arrived at, the weights are found by the local aild biologically plausible Perceptron Learning Rule (PLR). We tested our learning algorithm on four problems: adjacency, symmetry, parity and combined symmetry-parity.