Grieco, Riccardo
iCub3 Avatar System: Enabling Remote Fully-Immersive Embodiment of Humanoid Robots
Dafarra, Stefano, Pattacini, Ugo, Romualdi, Giulio, Rapetti, Lorenzo, Grieco, Riccardo, Darvish, Kourosh, Milani, Gianluca, Valli, Enrico, Sorrentino, Ines, Viceconte, Paolo Maria, Scalzo, Alessandro, Traversaro, Silvio, Sartore, Carlotta, Elobaid, Mohamed, Guedelha, Nuno, Herron, Connor, Leonessa, Alexander, Draicchio, Francesco, Metta, Giorgio, Maggiali, Marco, Pucci, Daniele
We present an avatar system designed to facilitate the embodiment of humanoid robots by human operators, validated through iCub3, a humanoid developed at the Istituto Italiano di Tecnologia (IIT). More precisely, the contribution of the paper is twofold: first, we present the humanoid iCub3 as a robotic avatar which integrates the latest significant improvements after about fifteen years of development of the iCub series; second, we present a versatile avatar system enabling humans to embody humanoid robots encompassing aspects such as locomotion, manipulation, voice, and face expressions with comprehensive sensory feedback including visual, auditory, haptic, weight, and touch modalities. We validate the system by implementing several avatar architecture instances, each tailored to specific requirements. First, we evaluated the optimized architecture for verbal, non-verbal, and physical interactions with a remote recipient. This testing involved the operator in Genoa and the avatar in the Biennale di Venezia, Venice - about 290 Km away - thus allowing the operator to visit remotely the Italian art exhibition. Second, we evaluated the optimised architecture for recipient physical collaboration and public engagement on-stage, live, at the We Make Future show, a prominent world digital innovation festival. In this instance, the operator was situated in Genoa while the avatar operates in Rimini - about 300 Km away - interacting with a recipient who entrusted the avatar a payload to carry on stage before an audience of approximately 2000 spectators. Third, we present the architecture implemented by the iCub Team for the ANA Avatar XPrize competition.
Online Action Recognition for Human Risk Prediction with Anticipated Haptic Alert via Wearables
Guo, Cheng, Rapetti, Lorenzo, Darvish, Kourosh, Grieco, Riccardo, Draicchio, Francesco, Pucci, Daniele
This paper proposes a framework that combines online human state estimation, action recognition and motion prediction to enable early assessment and prevention of worker biomechanical risk during lifting tasks. The framework leverages the NIOSH index to perform online risk assessment, thus fitting real-time applications. In particular, the human state is retrieved via inverse kinematics/dynamics algorithms from wearable sensor data. Human action recognition and motion prediction are achieved by implementing an LSTM-based Guided Mixture of Experts architecture, which is trained offline and inferred online. With the recognized actions, a single lifting activity is divided into a series of continuous movements and the Revised NIOSH Lifting Equation can be applied for risk assessment. Moreover, the predicted motions enable anticipation of future risks. A haptic actuator, embedded in the wearable system, can alert the subject of potential risk, acting as an active prevention device. The performance of the proposed framework is validated by executing real lifting tasks, while the subject is equipped with the iFeel wearable system.