Gribonval, Remi
Training with Quantization Noise for Extreme Model Compression
Fan, Angela, Stock, Pierre, Graham, Benjamin, Grave, Edouard, Gribonval, Remi, Jegou, Herve, Joulin, Armand
We tackle the problem of producing compact models, maximizing their accuracy for a given model size. A standard solution is to train networks with Quantization Aware Training (Jacob et al., 2018), where the weights are quantized during training and the gradients approximated with the Straight-Through Estimator (Bengio et al., 2013). In this paper, we extend this approach to work beyond int8 fixedpoint quantization with extreme compression methods where the approximations introduced by STE are severe, such as Product Quantization. Our proposal is to only quantize a different random subset of weights during each forward, allowing for unbiased gradients to flow through the other weights. Controlling the amount of noise and its form allows for extreme compression rates while maintaining the performance of the original model. As a result we establish new state-of-the-art compromises between accuracy and model size both in natural language processing and image classification. For example, applying our method to state-of-the-art Transformer and ConvNet architectures, we can achieve 82.5% accuracy on MNLI by compressing RoBERTa to 14 MB and 80.0% top-1 accuracy on ImageNet by compressing an EfficientNet-B3 to 3.3 MB. Many of the best performing neural network architectures in real-world applications have a large number of parameters. For example, the current standard machine translation architecture, Transformer (Vaswani et al., 2017), has layers that contain millions of parameters. Even models that are designed to jointly optimize the performance and the parameter efficiency, such as EfficientNets (Tan & Le, 2019), still require dozens to hundreds of megabytes, which limits their applications to domains like robotics or virtual assistants. Model compression schemes reduce the memory footprint of overparametrized models. Pruning (LeCun et al., 1990) and distillation (Hinton et al., 2015) remove parameters by reducing the number of network weights. In contrast, quantization focuses on reducing the bits per weight.
MULAN: A Blind and Off-Grid Method for Multichannel Echo Retrieval
Tukuljac, Helena Peic, Deleforge, Antoine, Gribonval, Remi
This paper addresses the general problem of blind echo retrieval, i.e., given M sensors measuring in the discrete-time domain M mixtures of K delayed and attenuated copies of an unknown source signal, can the echo locations and weights be recovered? This problem has broad applications in fields such as sonars, seismology, ultrasounds or room acoustics. It belongs to the broader class of blind channel identification problems, which have been intensively studied in signal processing. Existing methods in the literature proceed in two steps: (i) blind estimation of sparse discrete-time filters and (ii) echo information retrieval by peak-picking on filters. The precision of these methods is fundamentally limited by the rate at which the signals are sampled: estimated echo locations are necessary on-grid, and since true locations never match the sampling grid, the weight estimation precision is impacted. This is the so-called basis-mismatch problem in compressed sensing. We propose a radically different approach to the problem, building on the framework of finite-rate-of-innovation sampling. The approach operates directly in the parameter-space of echo locations and weights, and enables near-exact blind and off-grid echo retrieval from discrete-time measurements. It is shown to outperform conventional methods by several orders of magnitude in precision.
MULAN: A Blind and Off-Grid Method for Multichannel Echo Retrieval
Tukuljac, Helena Peic, Deleforge, Antoine, Gribonval, Remi
This paper addresses the general problem of blind echo retrieval, i.e., given M sensors measuring in the discrete-time domain M mixtures of K delayed and attenuated copies of an unknown source signal, can the echo location and weights be recovered? This problem has broad applications in fields such as sonars, seismology, ultrasounds or room acoustics. It belongs to the broader class of blind channel identification problems, which have been intensively studied in signal processing. All existing methods proceed in two steps: (i) blind estimation of sparse discrete-time filters and (ii) echo information retrieval by peak picking. The precision of these methods is fundamentally limited by the rate at which the signals are sampled: estimated echo locations are necessary on-grid, and since true locations never match the sampling grid, the weight estimation precision is also strongly limited. This is the so-called basis-mismatch problem in compressed sensing. We propose a radically different approach to the problem, building on top of the framework of finite-rate-of-innovation sampling. The approach operates directly in the parameter-space of echo locations and weights, and enables near-exact blind and off-grid echo retrieval from discrete-time measurements. It is shown to outperform conventional methods by several orders of magnitudes in precision.
Compressive Spectral Clustering
Tremblay, Nicolas, Puy, Gilles, Gribonval, Remi, Vandergheynst, Pierre
Spectral clustering has become a popular technique due to its high performance in many contexts. It comprises three main steps: create a similarity graph between N objects to cluster, compute the first k eigenvectors of its Laplacian matrix to define a feature vector for each object, and run k-means on these features to separate objects into k classes. Each of these three steps becomes computationally intensive for large N and/or k. We propose to speed up the last two steps based on recent results in the emerging field of graph signal processing: graph filtering of random signals, and random sampling of bandlimited graph signals. We prove that our method, with a gain in computation time that can reach several orders of magnitude, is in fact an approximation of spectral clustering, for which we are able to control the error. We test the performance of our method on artificial and real-world network data.
Reconciling "priors" & "priors" without prejudice?
Gribonval, Remi, Machart, Pierre
There are two major routes to address linear inverse problems. Whereas regularization-based approaches build estimators as solutions of penalized regression optimization problems, Bayesian estimators rely on the posterior distribution of the unknown, given some assumed family of priors. While these may seem radically different approaches, recent results have shown that, in the context of additive white Gaussian denoising, the Bayesian conditional mean estimator is always the solution of a penalized regression problem. The contribution of this paper is twofold. First, we extend the additive white Gaussian denoising results to general linear inverse problems with colored Gaussian noise. Second, we characterize conditions under which the penalty function associated to the conditional mean estimator can satisfy certain popular properties such as convexity, separability, and smoothness. This sheds light on some tradeoff between computational efficiency and estimation accuracy in sparse regularization, and draws some connections between Bayesian estimation and proximal optimization.
Under-determined reverberant audio source separation using a full-rank spatial covariance model
Duong, Ngoc, Vincent, Emmanuel, Gribonval, Remi
This article addresses the modeling of reverberant recording environments in the context of under-determined convolutive blind source separation. We model the contribution of each source to all mixture channels in the time-frequency domain as a zero-mean Gaussian random variable whose covariance encodes the spatial characteristics of the source. We then consider four specific covariance models, including a full-rank unconstrained model. We derive a family of iterative expectationmaximization (EM) algorithms to estimate the parameters of each model and propose suitable procedures to initialize the parameters and to align the order of the estimated sources across all frequency bins based on their estimated directions of arrival (DOA). Experimental results over reverberant synthetic mixtures and live recordings of speech data show the effectiveness of the proposed approach.