Greaves, Mark
Adversarial Training for EM Classification Networks
Grimes, Tom, Church, Eric, Pitts, William, Wood, Lynn, Brayfindley, Eva, Erikson, Luke, Greaves, Mark
We present a novel variant of Domain Adversarial Networks with impactful improvements to the loss functions, training paradigm, and hyperparameter optimization. New loss functions are defined for both forks of the DANN network, the label predictor and domain classifier, in order to facilitate more rapid gradient descent, provide more seamless integration into modern neural networking frameworks, and allow previously unavailable inferences into network behavior. Using these loss functions, it is possible to extend the concept of 'domain' to include arbitrary user defined labels applicable to subsets of the training data, the test data, or both. As such, the network can be operated in either 'On the Fly' mode where features provided by the feature extractor indicative of differences between 'domain' labels in the training data are removed or in 'Test Collection Informed' mode where features indicative of difference between 'domain' labels in the combined training and test data are removed (without needing to know or provide test activity labels to the network). This work also draws heavily from previous works on Robust Training which draws training examples from a L_inf ball around the training data in order to remove fragile features induced by random fluctuations in the data. On these networks we explore the process of hyperparameter optimization for both the domain adversarial and robust hyperparameters. Finally, this network is applied to the construction of a binary classifier used to identify the presence of EM signal emitted by a turbopump. For this example, the effect of the robust and domain adversarial training is to remove features indicative of the difference in background between instances of operation of the device - providing highly discriminative features on which to construct the classifier.
Inquire Biology: A Textbook that Answers Questions
Chaudhri, Vinay K. (SRI International) | Cheng, Britte (SRI International) | Overtholtzer, Adam (SRI International) | Roschelle, Jeremy (SRI International) | Spaulding, Aaron (SRI International) | Clark, Peter (Vulcan Inc.) | Greaves, Mark (Pacific Northwest National Laboratory) | Gunning, Dave (Palo Alto Research Center)
Inquire Biology is a prototype of a new kind of intelligent textbook -- one that answers students' questions, engages their interest, and improves their understanding. Inquire Biology provides unique capabilities via a knowledge representation that captures conceptual knowledge from the textbook and uses inference procedures to answer students' questions. In an initial controlled experiment, community college students using the Inquire Biology prototype outperformed students using either a hardcopy or conventional E-book version of the same biology textbook. While additional research is needed to fully develop Inquire Biology, the initial prototype clearly demonstrates the promise of applying knowledge representation and question-answering technology to electronic textbooks.
Inquire Biology: A Textbook that Answers Questions
Chaudhri, Vinay K. (SRI International) | Cheng, Britte (SRI International) | Overtholtzer, Adam (SRI International) | Roschelle, Jeremy (SRI International) | Spaulding, Aaron (SRI International) | Clark, Peter (Vulcan Inc.) | Greaves, Mark (Pacific Northwest National Laboratory) | Gunning, Dave (Palo Alto Research Center)
Inquire Biology is a prototype of a new kind of intelligent textbook — one that answers students’ questions, engages their interest, and improves their understanding. Inquire Biology provides unique capabilities via a knowledge representation that captures conceptual knowledge from the textbook and uses inference procedures to answer students’ questions. Students ask questions by typing free-form natural language queries or by selecting passages of text. The system then attempts to answer the question and also generates suggested questions related to the query or selection. The questions supported by the system were chosen to be educationally useful, for example: what is the structure of X? compare X and Y? how does X relate to Y? In user studies, students found this question-answering capability to be extremely useful while reading and while doing problem solving. In an initial controlled experiment, community college students using the Inquire Biology prototype outperformed students using either a hardcopy or conventional E-book version of the same biology textbook. While additional research is needed to fully develop Inquire Biology, the initial prototype clearly demonstrates the promise of applying knowledge representation and question-answering technology to electronic textbooks.
Project Halo Update--Progress Toward Digital Aristotle
Gunning, David (Vulcan, Inc.) | Chaudhri, Vinay K. (SRI International) | Clark, Peter E. (Boeing Research and Technology) | Barker, Ken (University of Texas at Austin) | Chaw, Shaw-Yi (University of Texas at Austin) | Greaves, Mark (Vulcan, Inc.) | Grosof, Benjamin (Vulcan, Inc.) | Leung, Alice (Raytheon BBN Technologies Corporation) | McDonald, David D. (Raytheon BBN Technologies Corporation) | Mishra, Sunil (SRI International) | Pacheco, John (SRI International) | Porter, Bruce (University of Texas at Austin) | Spaulding, Aaron (SRI International) | Tecuci, Dan (University of Texas at Austin) | Tien, Jing (SRI International)
In the winter, 2004 issue of AI Magazine, we reported Vulcan Inc.'s first step toward creating a question-answering system called "Digital Aristotle." The goal of that first step was to assess the state of the art in applied Knowledge Representation and Reasoning (KRR) by asking AI experts to represent 70 pages from the advanced placement (AP) chemistry syllabus and to deliver knowledge-based systems capable of answering questions from that syllabus. This paper reports the next step toward realizing a Digital Aristotle: we present the design and evaluation results for a system called AURA, which enables domain experts in physics, chemistry, and biology to author a knowledge base and that then allows a different set of users to ask novel questions against that knowledge base. These results represent a substantial advance over what we reported in 2004, both in the breadth of covered subjects and in the provision of sophisticated technologies in knowledge representation and reasoning, natural language processing, and question answering to domain experts and novice users.
Project Halo Update—Progress Toward Digital Aristotle
Gunning, David (Vulcan, Inc.) | Chaudhri, Vinay K. (SRI International) | Clark, Peter E. (Boeing Research and Technology) | Barker, Ken (University of Texas at Austin) | Chaw, Shaw-Yi (University of Texas at Austin) | Greaves, Mark (Vulcan, Inc.) | Grosof, Benjamin (Vulcan, Inc.) | Leung, Alice (Raytheon BBN Technologies Corporation) | McDonald, David D. (Raytheon BBN Technologies Corporation) | Mishra, Sunil (SRI International) | Pacheco, John (SRI International) | Porter, Bruce (University of Texas at Austin) | Spaulding, Aaron (SRI International) | Tecuci, Dan (University of Texas at Austin) | Tien, Jing (SRI International)
In the winter, 2004 issue of AI Magazine, we reported Vulcan Inc.'s first step toward creating a question-answering system called "Digital Aristotle." The goal of that first step was to assess the state of the art in applied Knowledge Representation and Reasoning (KRR) by asking AI experts to represent 70 pages from the advanced placement (AP) chemistry syllabus and to deliver knowledge-based systems capable of answering questions from that syllabus. This paper reports the next step toward realizing a Digital Aristotle: we present the design and evaluation results for a system called AURA, which enables domain experts in physics, chemistry, and biology to author a knowledge base and that then allows a different set of users to ask novel questions against that knowledge base. These results represent a substantial advance over what we reported in 2004, both in the breadth of covered subjects and in the provision of sophisticated technologies in knowledge representation and reasoning, natural language processing, and question answering to domain experts and novice users.
Reports of the AAAI 2009 Spring Symposia
Bao, Jie (Rensselaer Polytechnic Institute) | Bojars, Uldis (National University of Ireland) | Choudhury, Ranzeem (Dartmouth College) | Ding, Li (Rensselaer Polytechnic Institute) | Greaves, Mark (Vulcan Inc.) | Kapoor, Ashish (Microsoft Research) | Louchart, Sandy (Heriot-Watt University) | Mehta, Manish (Georgia Institute of Technology) | Nebel, Bernhard (Albert-Ludwigs University Freiburg) | Nirenburg, Sergei (University of Maryland Baltimore County) | Oates, Tim (University of Maryland Baltimore County) | Roberts, David L. (Georgia Institute of Technology) | Sanfilippo, Antonio (Pacific Northwest National Laboratory) | Stojanovic, Nenad (University of Karlsruhe) | Stubbs, Kristen (iRobot Corportion) | Thomaz, Andrea L. (Georgia Institute of Technology) | Tsui, Katherine (University of Massachusetts Lowell) | Woelfl, Stefan (Albert-Ludwigs University Freiburg)
The titles of the nine symposia were Agents that Learn from Human Teachers, Benchmarking of Qualitative Spatial and Temporal Reasoning Systems, Experimental Design for Real-World Systems, Human Behavior Modeling, Intelligent Event Processing, Intelligent Narrative Technologies II, Learning by Reading and Learning to Read, Social Semantic Web: Where Web 2.0 Meets Web 3.0, and Technosocial Predictive Analytics. The aim of the Benchmarking of Qualitative Spatial and Temporal Reasoning Systems symposium was to initiate the development of a problem repository in the field of qualitative spatial and temporal reasoning and identify a graded set of challenges for future midterm and long-term research. The Intelligent Event Processing symposium discussed the need for more AI-based approaches in event processing and defined a kind of research agenda for the field, coined as intelligent complex event processing (iCEP). The Intelligent Narrative Technologies II AAAI symposium discussed innovations, progress, and novel techniques in the research domain.
Reports of the AAAI 2009 Spring Symposia
Bao, Jie (Rensselaer Polytechnic Institute) | Bojars, Uldis (National University of Ireland) | Choudhury, Ranzeem (Dartmouth College) | Ding, Li (Rensselaer Polytechnic Institute) | Greaves, Mark (Vulcan Inc.) | Kapoor, Ashish (Microsoft Research) | Louchart, Sandy (Heriot-Watt University) | Mehta, Manish (Georgia Institute of Technology) | Nebel, Bernhard (Albert-Ludwigs University Freiburg) | Nirenburg, Sergei (University of Maryland Baltimore County) | Oates, Tim (University of Maryland Baltimore County) | Roberts, David L. (Georgia Institute of Technology) | Sanfilippo, Antonio (Pacific Northwest National Laboratory) | Stojanovic, Nenad (University of Karlsruhe) | Stubbs, Kristen (iRobot Corportion) | Thomaz, Andrea L. (Georgia Institute of Technology) | Tsui, Katherine (University of Massachusetts Lowell) | Woelfl, Stefan (Albert-Ludwigs University Freiburg)
The Association for the Advancement of Artificial Intelligence, in cooperation with Stanford University's Department of Computer Science, was pleased to present the 2009 Spring Symposium Series, held Monday through Wednesday, March 23–25, 2009 at Stanford University. The titles of the nine symposia were Agents that Learn from Human Teachers, Benchmarking of Qualitative Spatial and Temporal Reasoning Systems, Experimental Design for Real-World Systems, Human Behavior Modeling, Intelligent Event Processing, Intelligent Narrative Technologies II, Learning by Reading and Learning to Read, Social Semantic Web: Where Web 2.0 Meets Web 3.0, and Technosocial Predictive Analytics. The goal of the Agents that Learn from Human Teachers was to investigate how we can enable software and robotics agents to learn from real-time interaction with an everyday human partner. The aim of the Benchmarking of Qualitative Spatial and Temporal Reasoning Systems symposium was to initiate the development of a problem repository in the field of qualitative spatial and temporal reasoning and identify a graded set of challenges for future midterm and long-term research. The Experimental Design symposium discussed the challenges of evaluating AI systems. The Human Behavior Modeling symposium explored reasoning methods for understanding various aspects of human behavior, especially in the context of designing intelligent systems that interact with humans. The Intelligent Event Processing symposium discussed the need for more AI-based approaches in event processing and defined a kind of research agenda for the field, coined as intelligent complex event processing (iCEP). The Intelligent Narrative Technologies II AAAI symposium discussed innovations, progress, and novel techniques in the research domain. The Learning by Reading and Learning to Read symposium explored two aspects of making natural language texts semantically accessible to, and processable by, machines. The Social Semantic Web symposium focused on the real-world grand challenges in this area. Finally, the Technosocial Predictive Analytics symposium explored new methods for anticipatory analytical thinking that provide decision advantage through the integration of human and physical models.