Goto

Collaborating Authors

 Gray, Nicholas


GLARE: A Dataset for Traffic Sign Detection in Sun Glare

arXiv.org Artificial Intelligence

Real-time machine learning object detection algorithms are often found within autonomous vehicle technology and depend on quality datasets. It is essential that these algorithms work correctly in everyday conditions as well as under strong sun glare. Reports indicate glare is one of the two most prominent environment-related reasons for crashes. However, existing datasets, such as the Laboratory for Intelligent & Safe Automobiles Traffic Sign (LISA) Dataset and the German Traffic Sign Recognition Benchmark, do not reflect the existence of sun glare at all. This paper presents the GLARE (GLARE is available at: https://github.com/NicholasCG/GLARE_Dataset ) traffic sign dataset: a collection of images with U.S-based traffic signs under heavy visual interference by sunlight. GLARE contains 2,157 images of traffic signs with sun glare, pulled from 33 videos of dashcam footage of roads in the United States. It provides an essential enrichment to the widely used LISA Traffic Sign dataset. Our experimental study shows that although several state-of-the-art baseline architectures have demonstrated good performance on traffic sign detection in conditions without sun glare in the past, they performed poorly when tested against GLARE (e.g., average mAP0.5:0.95 of 19.4). We also notice that current architectures have better detection when trained on images of traffic signs in sun glare performance (e.g., average mAP0.5:0.95 of 39.6), and perform best when trained on a mixture of conditions (e.g., average mAP0.5:0.95 of 42.3).


Logistic Regression Through the Veil of Imprecise Data

arXiv.org Machine Learning

Logistic regression is an important statistical tool for assessing the probability of an outcome based upon some predictive variables. Standard methods can only deal with precisely known data, however many datasets have uncertainties which traditional methods either reduce to a single point or completely disregarded. In this paper we show that it is possible to include these uncertainties by considering an imprecise logistic regression model using the set of possible models that can be obtained from values from within the intervals. This has the advantage of clearly expressing the epistemic uncertainty removed by traditional methods.