Granqvist, Filip
pfl-research: simulation framework for accelerating research in Private Federated Learning
Granqvist, Filip, Song, Congzheng, Cahill, Áine, van Dalen, Rogier, Pelikan, Martin, Chan, Yi Sheng, Feng, Xiaojun, Krishnaswami, Natarajan, Jina, Vojta, Chitnis, Mona
Federated learning (FL) is an emerging machine learning (ML) training paradigm where clients own their data and collaborate to train a global model, without revealing any data to the server and other participants. Researchers commonly perform experiments in a simulation environment to quickly iterate on ideas. However, existing open-source tools do not offer the efficiency required to simulate FL on larger and more realistic FL datasets. We introduce pfl-research, a fast, modular, and easy-to-use Python framework for simulating FL. It supports TensorFlow, PyTorch, and non-neural network models, and is tightly integrated with state-of-the-art privacy algorithms. We study the speed of open-source FL frameworks and show that pfl-research is 7-72$\times$ faster than alternative open-source frameworks on common cross-device setups. Such speedup will significantly boost the productivity of the FL research community and enable testing hypotheses on realistic FL datasets that were previously too resource intensive. We release a suite of benchmarks that evaluates an algorithm's overall performance on a diverse set of realistic scenarios. The code is available on GitHub at https://github.com/apple/pfl-research.
Samplable Anonymous Aggregation for Private Federated Data Analysis
Talwar, Kunal, Wang, Shan, McMillan, Audra, Jina, Vojta, Feldman, Vitaly, Basile, Bailey, Cahill, Aine, Chan, Yi Sheng, Chatzidakis, Mike, Chen, Junye, Chick, Oliver, Chitnis, Mona, Ganta, Suman, Goren, Yusuf, Granqvist, Filip, Guo, Kristine, Jacobs, Frederic, Javidbakht, Omid, Liu, Albert, Low, Richard, Mascenik, Dan, Myers, Steve, Park, David, Park, Wonhee, Parsa, Gianni, Pauly, Tommy, Priebe, Christian, Rishi, Rehan, Rothblum, Guy, Scaria, Michael, Song, Linmao, Song, Congzheng, Tarbe, Karl, Vogt, Sebastian, Winstrom, Luke, Zhou, Shundong
Learning aggregate population trends can allow for better data-driven decisions, and application of machine learning can improve user experience. Compared to learning from public curated datasets, learning from a larger population offers several benefits. As an example, a next-word prediction model trained on words typed by users (a) can better fit the actual distribution of language used on devices, (b) can adapt faster to shifts in distribution, and (c) can more faithfully represent smaller sub-populations that may not be well-represented in curated datasets. At the same time, training such models may involve sensitive user data.
Training Large-Vocabulary Neural Language Models by Private Federated Learning for Resource-Constrained Devices
Xu, Mingbin, Song, Congzheng, Tian, Ye, Agrawal, Neha, Granqvist, Filip, van Dalen, Rogier, Zhang, Xiao, Argueta, Arturo, Han, Shiyi, Deng, Yaqiao, Liu, Leo, Walia, Anmol, Jin, Alex
Federated Learning (FL) is a technique to train models using data distributed across devices. Differential Privacy (DP) provides a formal privacy guarantee for sensitive data. Our goal is to train a large neural network language model (NNLM) on compute-constrained devices while preserving privacy using FL and DP. However, the DP-noise introduced to the model increases as the model size grows, which often prevents convergence. We propose Partial Embedding Updates (PEU), a novel technique to decrease noise by decreasing payload size. Furthermore, we adopt Low Rank Adaptation (LoRA) and Noise Contrastive Estimation (NCE) to reduce the memory demands of large models on compute-constrained devices. This combination of techniques makes it possible to train large-vocabulary language models while preserving accuracy and privacy.
Improving on-device speaker verification using federated learning with privacy
Granqvist, Filip, Seigel, Matt, van Dalen, Rogier, Cahill, Áine, Shum, Stephen, Paulik, Matthias
Information on speaker characteristics can be useful as side information in improving speaker recognition accuracy. However, such information is often private. This paper investigates how privacy-preserving learning can improve a speaker verification system, by enabling the use of privacy-sensitive speaker data to train an auxiliary classification model that predicts vocal characteristics of speakers. In particular, this paper explores the utility achieved by approaches which combine different federated learning and differential privacy mechanisms. These approaches make it possible to train a central model while protecting user privacy, with users' data remaining on their devices. Furthermore, they make learning on a large population of speakers possible, ensuring good coverage of speaker characteristics when training a model. The auxiliary model described here uses features extracted from phrases which trigger a speaker verification system. From these features, the model predicts speaker characteristic labels considered useful as side information. The knowledge of the auxiliary model is distilled into a speaker verification system using multi-task learning, with the side information labels predicted by this auxiliary model being the additional task. This approach results in a 6% relative improvement in equal error rate over a baseline system.