Granot, Elad
On the Sample Complexity of Two-Layer Networks: Lipschitz vs. Element-Wise Lipschitz Activation
Daniely, Amit, Granot, Elad
We investigate the sample complexity of bounded two-layer neural networks using different activation functions. In particular, we consider the class $$ \mathcal{H} = \left\{\textbf{x}\mapsto \langle \textbf{v}, \sigma \circ W\textbf{b} + \textbf{b} \rangle : \textbf{b}\in\mathbb{R}^d, W \in \mathbb{R}^{\mathcal{T}\times d}, \textbf{v} \in \mathbb{R}^{\mathcal{T}}\right\} $$ where the spectral norm of $W$ and $\textbf{v}$ is bounded by $O(1)$, the Frobenius norm of $W$ is bounded from its initialization by $R > 0$, and $\sigma$ is a Lipschitz activation function. We prove that if $\sigma$ is element-wise, then the sample complexity of $\mathcal{H}$ has only logarithmic dependency in width and that this complexity is tight, up to logarithmic factors. We further show that the element-wise property of $\sigma$ is essential for a logarithmic dependency bound in width, in the sense that there exist non-element-wise activation functions whose sample complexity is linear in width, for widths that can be up to exponential in the input dimension. For the upper bound, we use the recent approach for norm-based bounds named Approximate Description Length (ADL) by arXiv:1910.05697. We further develop new techniques and tools for this approach that will hopefully inspire future works.
An Exact Poly-Time Membership-Queries Algorithm for Extraction a three-Layer ReLU Network
Daniely, Amit, Granot, Elad
We consider the natural problem of learning a ReLU network from queries, which was recently remotivated by model extraction attacks. In this work, we present a polynomial-time algorithm that can learn a depth-two ReLU network from queries under mild general position assumptions. We also present a polynomial-time algorithm that, under mild general position assumptions, can learn a rich class of depth-three ReLU networks from queries. For instance, it can learn most networks where the number of first layer neurons is smaller than the dimension and the number of second layer neurons. These two results substantially improve state-of-the-art: Until our work, polynomial-time algorithms were only shown to learn from queries depth-two networks under the assumption that either the underlying distribution is Gaussian (Chen et al. (2021)) or that the weights matrix rows are linearly independent (Milli et al. (2019)). For depth three or more, there were no known poly-time results. With the growth of neural-network-based applications, many commercial companies offer machine learning services, allowing public use of trained networks as a black-box. Those networks allow the user to query the model and, in some cases, return the exact output of the network to allow the users to reason about the model's output.
Generalization Bounds for Neural Networks via Approximate Description Length
Daniely, Amit, Granot, Elad
We investigate the sample complexity of networks with bounds on the magnitude of its weights. In particular, we consider the class \[ H=\left\{W_t\circ\rho\circ \ldots\circ\rho\circ W_{1} :W_1,\ldots,W_{t-1}\in M_{d, d}, W_t\in M_{1,d}\right\} \] where the spectral norm of each $W_i$ is bounded by $O(1)$, the Frobenius norm is bounded by $R$, and $\rho$ is the sigmoid function $\frac{e^x}{1+e^x}$ or the smoothened ReLU function $ \ln (1+e^x)$. We show that for any depth $t$, if the inputs are in $[-1,1]^d$, the sample complexity of $H$ is $\tilde O\left(\frac{dR^2}{\epsilon^2}\right)$. This bound is optimal up to log-factors, and substantially improves over the previous state of the art of $\tilde O\left(\frac{d^2R^2}{\epsilon^2}\right)$. We furthermore show that this bound remains valid if instead of considering the magnitude of the $W_i$'s, we consider the magnitude of $W_i - W_i^0$, where $W_i^0$ are some reference matrices, with spectral norm of $O(1)$. By taking the $W_i^0$ to be the matrices at the onset of the training process, we get sample complexity bounds that are sub-linear in the number of parameters, in many typical regimes of parameters. To establish our results we develop a new technique to analyze the sample complexity of families $H$ of predictors. We start by defining a new notion of a randomized approximate description of functions $f:X\to\mathbb{R}^d$. We then show that if there is a way to approximately describe functions in a class $H$ using $d$ bits, then $d/\epsilon^2$ examples suffices to guarantee uniform convergence. Namely, that the empirical loss of all the functions in the class is $\epsilon$-close to the true loss. Finally, we develop a set of tools for calculating the approximate description length of classes of functions that can be presented as a composition of linear function classes and non-linear functions.