Granada, Roger
Second FRCSyn-onGoing: Winning Solutions and Post-Challenge Analysis to Improve Face Recognition with Synthetic Data
DeAndres-Tame, Ivan, Tolosana, Ruben, Melzi, Pietro, Vera-Rodriguez, Ruben, Kim, Minchul, Rathgeb, Christian, Liu, Xiaoming, Gomez, Luis F., Morales, Aythami, Fierrez, Julian, Ortega-Garcia, Javier, Zhong, Zhizhou, Huang, Yuge, Mi, Yuxi, Ding, Shouhong, Zhou, Shuigeng, He, Shuai, Fu, Lingzhi, Cong, Heng, Zhang, Rongyu, Xiao, Zhihong, Smirnov, Evgeny, Pimenov, Anton, Grigorev, Aleksei, Timoshenko, Denis, Asfaw, Kaleb Mesfin, Low, Cheng Yaw, Liu, Hao, Wang, Chuyi, Zuo, Qing, He, Zhixiang, Shahreza, Hatef Otroshi, George, Anjith, Unnervik, Alexander, Rahimi, Parsa, Marcel, Sébastien, Neto, Pedro C., Huber, Marco, Kolf, Jan Niklas, Damer, Naser, Boutros, Fadi, Cardoso, Jaime S., Sequeira, Ana F., Atzori, Andrea, Fenu, Gianni, Marras, Mirko, Štruc, Vitomir, Yu, Jiang, Li, Zhangjie, Li, Jichun, Zhao, Weisong, Lei, Zhen, Zhu, Xiangyu, Zhang, Xiao-Yu, Biesseck, Bernardo, Vidal, Pedro, Coelho, Luiz, Granada, Roger, Menotti, David
Synthetic data is gaining increasing popularity for face recognition technologies, mainly due to the privacy concerns and challenges associated with obtaining real data, including diverse scenarios, quality, and demographic groups, among others. It also offers some advantages over real data, such as the large amount of data that can be generated or the ability to customize it to adapt to specific problem-solving needs. To effectively use such data, face recognition models should also be specifically designed to exploit synthetic data to its fullest potential. In order to promote the proposal of novel Generative AI methods and synthetic data, and investigate the application of synthetic data to better train face recognition systems, we introduce the 2nd FRCSyn-onGoing challenge, based on the 2nd Face Recognition Challenge in the Era of Synthetic Data (FRCSyn), originally launched at CVPR 2024. This is an ongoing challenge that provides researchers with an accessible platform to benchmark i) the proposal of novel Generative AI methods and synthetic data, and ii) novel face recognition systems that are specifically proposed to take advantage of synthetic data. We focus on exploring the use of synthetic data both individually and in combination with real data to solve current challenges in face recognition such as demographic bias, domain adaptation, and performance constraints in demanding situations, such as age disparities between training and testing, changes in the pose, or occlusions. Very interesting findings are obtained in this second edition, including a direct comparison with the first one, in which synthetic databases were restricted to DCFace and GANDiffFace.
Second Edition FRCSyn Challenge at CVPR 2024: Face Recognition Challenge in the Era of Synthetic Data
DeAndres-Tame, Ivan, Tolosana, Ruben, Melzi, Pietro, Vera-Rodriguez, Ruben, Kim, Minchul, Rathgeb, Christian, Liu, Xiaoming, Morales, Aythami, Fierrez, Julian, Ortega-Garcia, Javier, Zhong, Zhizhou, Huang, Yuge, Mi, Yuxi, Ding, Shouhong, Zhou, Shuigeng, He, Shuai, Fu, Lingzhi, Cong, Heng, Zhang, Rongyu, Xiao, Zhihong, Smirnov, Evgeny, Pimenov, Anton, Grigorev, Aleksei, Timoshenko, Denis, Asfaw, Kaleb Mesfin, Low, Cheng Yaw, Liu, Hao, Wang, Chuyi, Zuo, Qing, He, Zhixiang, Shahreza, Hatef Otroshi, George, Anjith, Unnervik, Alexander, Rahimi, Parsa, Marcel, Sébastien, Neto, Pedro C., Huber, Marco, Kolf, Jan Niklas, Damer, Naser, Boutros, Fadi, Cardoso, Jaime S., Sequeira, Ana F., Atzori, Andrea, Fenu, Gianni, Marras, Mirko, Štruc, Vitomir, Yu, Jiang, Li, Zhangjie, Li, Jichun, Zhao, Weisong, Lei, Zhen, Zhu, Xiangyu, Zhang, Xiao-Yu, Biesseck, Bernardo, Vidal, Pedro, Coelho, Luiz, Granada, Roger, Menotti, David
Synthetic data is gaining increasing relevance for training machine learning models. This is mainly motivated due to several factors such as the lack of real data and intra-class variability, time and errors produced in manual labeling, and in some cases privacy concerns, among others. This paper presents an overview of the 2nd edition of the Face Recognition Challenge in the Era of Synthetic Data (FRCSyn) organized at CVPR 2024. FRCSyn aims to investigate the use of synthetic data in face recognition to address current technological limitations, including data privacy concerns, demographic biases, generalization to novel scenarios, and performance constraints in challenging situations such as aging, pose variations, and occlusions. Unlike the 1st edition, in which synthetic data from DCFace and GANDiffFace methods was only allowed to train face recognition systems, in this 2nd edition we propose new sub-tasks that allow participants to explore novel face generative methods. The outcomes of the 2nd FRCSyn Challenge, along with the proposed experimental protocol and benchmarking contribute significantly to the application of synthetic data to face recognition.
Imitating Unknown Policies via Exploration
Gavenski, Nathan, Monteiro, Juarez, Granada, Roger, Meneguzzi, Felipe, Barros, Rodrigo C.
Behavioral cloning is an imitation learning technique that teaches an agent how to behave through expert demonstrations. Recent approaches use self-supervision of fully-observable unlabeled snapshots of the states to decode state-pairs into actions. However, the iterative learning scheme from these techniques are prone to getting stuck into bad local minima. We address these limitations incorporating a two-phase model into the original framework, which learns from unlabeled observations via exploration, substantially improving traditional behavioral cloning by exploiting (i) a sampling mechanism to prevent bad local minima, (ii) a sampling mechanism to improve exploration, and (iii) self-attention modules to capture global features. The resulting technique outperforms the previous state-of-the-art in four different environments by a large margin.
Energy-Aware Path Planning for Autonomous Mobile Robot Navigation
Maidana, Renan (Pontifical Catholic University of Rio Grande do Sul ) | Granada, Roger (Pontifical Catholic University of Rio Grande do Sul) | Jurak, Darlan (Pontifical Catholic University of Rio Grande do Sul) | Magnaguagno, Maurício (Pontifical Catholic University of Rio Grande do Sul) | Meneguzzi, Felipe (Pontifical Catholic University of Rio Grande do Sul) | Amory, Alexandre (Pontifical Catholic University of Rio Grande do Sul)
Battery life is yet one of the main limiting factors to a robot's total mission time, and efficient energy management is paramount in a robotic application. In this paper, we integrate energy awareness in the path planning of a mobile robot performing autonomous navigation. Our contributions are: 1) The formalization of a planning domain for mobile robot path planning which accounts for energy consumption and integrates energy actions in the generated plans; 2) A proof of concept of automatic path planning that avoids high energy areas in a known environment. We test our approach in simulation, extending an embedded computer's total battery discharge time by approximately 42.8%, and in a real ground mobile robot, achieving a mean energy draw reduction of 52.02%, both compared to conventional path planning.
Classifying Norm Conflicts using Learned Semantic Representations
Aires, João Paulo, Granada, Roger, Monteiro, Juarez, Barros, Rodrigo C., Meneguzzi, Felipe
As natural language uses a diverse and often vague way to express ideas, identifying a norm conflict and its causes While most social norms are informal, they are often in contracts is a challenging task. An ever larger number of formalized by companies in contracts to regulate contracts being currently generated necessitates a fast and reliable trades of goods and services. When poorly process to identify norm conflicts. However, since such written, contracts may contain normative conflicts contracts are written in natural language, traditional revision resulting from opposing deontic meanings or contradict methods involve contract makers reading the contract and specifications. As contracts tend to be identifying conflicting points between norms. Such a method long and contain many norms, manually identifying requires huge human-effort and may not guarantee a revision such conflicts requires human-effort, which is that eliminates all conflicts. In response, we provide three time-consuming and error-prone. Automating such contributions towards automatically identifying and classifying task benefits contract makers increasing productivity potential conflicts between norms in contracts.
LSTM-Based Goal Recognition in Latent Space
Amado, Leonardo, Aires, João Paulo, Pereira, Ramon Fraga, Magnaguagno, Maurício C., Granada, Roger, Meneguzzi, Felipe
Approaches to goal recognition have progressively relaxed the requirements about the amount of domain knowledge and available observations, yielding accurate and efficient algorithms capable of recognizing goals. However, to recognize goals in raw data, recent approaches require either human engineered domain knowledge, or samples of behavior that account for almost all actions being observed to infer possible goals. This is clearly too strong a requirement for real-world applications of goal recognition, and we develop an approach that leverages advances in recurrent neural networks to perform goal recognition as a classification task, using encoded plan traces for training. We empirically evaluate our approach against the state-of-the-art in goal recognition with image-based domains, and discuss under which conditions our approach is superior to previous ones.