Graham, Matthew
Building Machine Learning Challenges for Anomaly Detection in Science
Campolongo, Elizabeth G., Chou, Yuan-Tang, Govorkova, Ekaterina, Bhimji, Wahid, Chao, Wei-Lun, Harris, Chris, Hsu, Shih-Chieh, Lapp, Hilmar, Neubauer, Mark S., Namayanja, Josephine, Subramanian, Aneesh, Harris, Philip, Anand, Advaith, Carlyn, David E., Ghosh, Subhankar, Lawrence, Christopher, Moreno, Eric, Raikman, Ryan, Wu, Jiaman, Zhang, Ziheng, Adhi, Bayu, Gharehtoragh, Mohammad Ahmadi, Monsalve, Saúl Alonso, Babicz, Marta, Baig, Furqan, Banerji, Namrata, Bardon, William, Barna, Tyler, Berger-Wolf, Tanya, Dieng, Adji Bousso, Brachman, Micah, Buat, Quentin, Hui, David C. Y., Cao, Phuong, Cerino, Franco, Chang, Yi-Chun, Chaulagain, Shivaji, Chen, An-Kai, Chen, Deming, Chen, Eric, Chou, Chia-Jui, Ciou, Zih-Chen, Cochran-Branson, Miles, Choi, Artur Cordeiro Oudot, Coughlin, Michael, Cremonesi, Matteo, Dadarlat, Maria, Darch, Peter, Desai, Malina, Diaz, Daniel, Dillmann, Steven, Duarte, Javier, Duporge, Isla, Ekka, Urbas, Heravi, Saba Entezari, Fang, Hao, Flynn, Rian, Fox, Geoffrey, Freed, Emily, Gao, Hang, Gao, Jing, Gonski, Julia, Graham, Matthew, Hashemi, Abolfazl, Hauck, Scott, Hazelden, James, Peterson, Joshua Henry, Hoang, Duc, Hu, Wei, Huennefeld, Mirco, Hyde, David, Janeja, Vandana, Jaroenchai, Nattapon, Jia, Haoyi, Kang, Yunfan, Kholiavchenko, Maksim, Khoda, Elham E., Kim, Sangin, Kumar, Aditya, Lai, Bo-Cheng, Le, Trung, Lee, Chi-Wei, Lee, JangHyeon, Lee, Shaocheng, van der Lee, Suzan, Lewis, Charles, Li, Haitong, Li, Haoyang, Liao, Henry, Liu, Mia, Liu, Xiaolin, Liu, Xiulong, Loncar, Vladimir, Lyu, Fangzheng, Makarov, Ilya, Mao, Abhishikth Mallampalli Chen-Yu, Michels, Alexander, Migala, Alexander, Mokhtar, Farouk, Morlighem, Mathieu, Namgung, Min, Novak, Andrzej, Novick, Andrew, Orsborn, Amy, Padmanabhan, Anand, Pan, Jia-Cheng, Pandya, Sneh, Pei, Zhiyuan, Peixoto, Ana, Percivall, George, Leung, Alex Po, Purushotham, Sanjay, Que, Zhiqiang, Quinnan, Melissa, Ranjan, Arghya, Rankin, Dylan, Reissel, Christina, Riedel, Benedikt, Rubenstein, Dan, Sasli, Argyro, Shlizerman, Eli, Singh, Arushi, Singh, Kim, Sokol, Eric R., Sorensen, Arturo, Su, Yu, Taheri, Mitra, Thakkar, Vaibhav, Thomas, Ann Mariam, Toberer, Eric, Tsai, Chenghan, Vandewalle, Rebecca, Verma, Arjun, Venterea, Ricco C., Wang, He, Wang, Jianwu, Wang, Sam, Wang, Shaowen, Watts, Gordon, Weitz, Jason, Wildridge, Andrew, Williams, Rebecca, Wolf, Scott, Xu, Yue, Yan, Jianqi, Yu, Jai, Zhang, Yulei, Zhao, Haoran, Zhao, Ying, Zhong, Yibo
Scientific discoveries are often made by finding a pattern or object that was not predicted by the known rules of science. Oftentimes, these anomalous events or objects that do not conform to the norms are an indication that the rules of science governing the data are incomplete, and something new needs to be present to explain these unexpected outliers. The challenge of finding anomalies can be confounding since it requires codifying a complete knowledge of the known scientific behaviors and then projecting these known behaviors on the data to look for deviations. When utilizing machine learning, this presents a particular challenge since we require that the model not only understands scientific data perfectly but also recognizes when the data is inconsistent and out of the scope of its trained behavior. In this paper, we present three datasets aimed at developing machine learning-based anomaly detection for disparate scientific domains covering astrophysics, genomics, and polar science. We present the different datasets along with a scheme to make machine learning challenges around the three datasets findable, accessible, interoperable, and reusable (FAIR). Furthermore, we present an approach that generalizes to future machine learning challenges, enabling the possibility of large, more compute-intensive challenges that can ultimately lead to scientific discovery.
Recommendation or Discrimination?: Quantifying Distribution Parity in Information Retrieval Systems
Khaziev, Rinat, Casavant, Bryce, Washabaugh, Pearce, Winecoff, Amy A., Graham, Matthew
Information retrieval (IR) systems often leverage query data to suggest relevant items to users. This introduces the possibility of unfairness if the query (i.e., input) and the resulting recommendations unintentionally correlate with latent factors that are protected variables (e.g., race, gender, and age). For instance, a visual search system for fashion recommendations may pick up on features of the human models rather than fashion garments when generating recommendations. In this work, we introduce a statistical test for "distribution parity" in the top-K IR results, which assesses whether a given set of recommendations is fair with respect to a specific protected variable. We evaluate our test using both simulated and empirical results. First, using artificially biased recommendations, we demonstrate the trade-off between statistically detectable bias and the size of the search catalog. Second, we apply our test to a visual search system for fashion garments, specifically testing for recommendation bias based on the skin tone of fashion models. Our distribution parity test can help ensure that IR systems' results are fair and produce a good experience for all users.