Goto

Collaborating Authors

 Graesser, Arthur


Recent Advances in Conversational Intelligent Tutoring Systems

AI Magazine

We report recent advances in intelligent tutoring systems with conversational dialogue. Macroadaptivity refers to a system's capability to select appropriate instructional tasks for the learner to work on. Microadaptivity refers to a system's capability to adapt its scaffolding while the learner is working on a particular task. Learning progressions and deeper dialogue and natural language processing techniques are key features of DeepTutor, the first intelligent tutoring system based on learning progressions.


Recent Advances in Conversational Intelligent Tutoring Systems

AI Magazine

We report recent advances in intelligent tutoring systems with conversational dialogue. We highlight progress in terms of macro and microadaptivity. Macroadaptivity refers to a system’s capability to select appropriate instructional tasks for the learner to work on. Microadaptivity refers to a system’s capability to adapt its scaffolding while the learner is working on a particular task. The advances in macro and microadaptivity that are presented here were made possible by the use of learning progressions, deeper dialogue and natural language processing techniques, and by the use of affect-enabled components. Learning progressions and deeper dialogue and natural language processing techniques are key features of DeepTutor, the first intelligent tutoring system based on learning progressions. These improvements extend the bandwidth of possibilities for tailoring instruction to each individual student which is needed for maximizing engagement and ultimately learning.


Reports of the AAAI 2011 Fall Symposia

AI Magazine

The Association for the Advancement of Artificial Intelligence was pleased to present the 2011 Fall Symposium Series, held Friday through Sunday, November 4–6, at the Westin Arlington Gateway in Arlington, Virginia. The titles of the seven symposia are as follows: (1) Advances in Cognitive Systems; (2) Building Representations of Common Ground with Intelligent Agents; (3) Complex Adaptive Systems: Energy, Information and Intelligence; (4) Multiagent Coordination under Uncertainty; (5) Open Government Knowledge: AI Opportunities and Challenges; (6) Question Generation; and (7) Robot-Human Teamwork in Dynamic Adverse Environment. The highlights of each symposium are presented in this report.


Reports of the AAAI 2011 Fall Symposia

AI Magazine

The Association for the Advancement of Artificial Intelligence was pleased to present the 2011 Fall Symposium Series, held Friday through Sunday, November 4–6, at the Westin Arlington Gateway in Arlington, Virginia. The titles of the seven symposia are as follows: (1) Advances in Cognitive Systems; (2) Building Representations of Common Ground with Intelligent Agents; (3) Complex Adaptive Systems: Energy, Information and Intelligence; (4) Multiagent Coordination under Uncertainty; (5) Open Government Knowledge: AI Opportunities and Challenges; (6) Question Generation; and (7) Robot-Human Teamwork in Dynamic Adverse Environment. The highlights of each symposium are presented in this report.