Goto

Collaborating Authors

 Gröger, Fabian


Evaluation of Deep Audio Representations for Hearables

arXiv.org Artificial Intelligence

Effectively steering hearable devices requires understanding the acoustic environment around the user. In the computational analysis of sound scenes, foundation models have emerged as the state of the art to produce high-performance, robust, multi-purpose audio representations. We introduce and release Deep Evaluation of Audio Representations (DEAR), the first dataset and benchmark to evaluate the efficacy of foundation models in capturing essential acoustic properties for hearables. The dataset includes 1,158 audio tracks, each 30 seconds long, created by spatially mixing proprietary monologues with commercial, high-quality recordings of everyday acoustic scenes. Our benchmark encompasses eight tasks that assess the general context, speech sources, and technical acoustic properties of the audio scenes. Through our evaluation of four general-purpose audio representation models, we demonstrate that the BEATs model significantly surpasses its counterparts. This superiority underscores the advantage of models trained on diverse audio collections, confirming their applicability to a wide array of auditory tasks, including encoding the environment properties necessary for hearable steering. The DEAR dataset and associated code are available at https://dear-dataset.github.io.


Towards Scalable Foundation Models for Digital Dermatology

arXiv.org Artificial Intelligence

The growing demand for accurate and equitable AI models in digital dermatology faces a significant challenge: the lack of diverse, high-quality labeled data. In this work, we investigate the potential of domain-specific foundation models for dermatology in addressing this challenge. We utilize self-supervised learning (SSL) techniques to pre-train models on a dataset of over 240,000 dermatological images from public and private collections. Our study considers several SSL methods and compares the resulting foundation models against domain-agnostic models like those pre-trained on ImageNet and state-of-the-art models such as MONET across 12 downstream tasks. Unlike previous research, we emphasize the development of smaller models that are more suitable for resource-limited clinical settings, facilitating easier adaptation to a broad range of use cases. Results show that models pre-trained in this work not only outperform general-purpose models but also approach the performance of models 50 times larger on clinically relevant diagnostic tasks. To promote further research in this direction, we publicly release both the training code and the foundation models, which can benefit clinicians in dermatological applications.


Self-Supervised and Few-Shot Learning for Robust Bioaerosol Monitoring

arXiv.org Artificial Intelligence

Real-time bioaerosol monitoring is improving the quality of life for people affected by allergies, but it often relies on deep-learning models which pose challenges for widespread adoption. These models are typically trained in a supervised fashion and require considerable effort to produce large amounts of annotated data, an effort that must be repeated for new particles, geographical regions, or measurement systems. In this work, we show that self-supervised learning and few-shot learning can be combined to classify holographic images of bioaerosol particles using a large collection of unlabelled data and only a few examples for each particle type. We first demonstrate that self-supervision on pictures of unidentified particles from ambient air measurements enhances identification even when labelled data is abundant. Most importantly, it greatly improves few-shot classification when only a handful of labelled images are available. Our findings suggest that real-time bioaerosol monitoring workflows can be substantially optimized, and the effort required to adapt models for different situations considerably reduced.


Towards Reliable Dermatology Evaluation Benchmarks

arXiv.org Artificial Intelligence

Benchmark datasets for digital dermatology unwittingly contain inaccuracies that reduce trust in model performance estimates. We propose a resource-efficient data-cleaning protocol to identify issues that escaped previous curation. The protocol leverages an existing algorithmic cleaning strategy and is followed by a confirmation process terminated by an intuitive stopping criterion. Based on confirmation by multiple dermatologists, we remove irrelevant samples and near duplicates and estimate the percentage of label errors in six dermatology image datasets for model evaluation promoted by the International Skin Imaging Collaboration. Along with this paper, we publish revised file lists for each dataset which should be used for model evaluation. Our work paves the way for more trustworthy performance assessment in digital dermatology.


Assessing Guest Nationality Composition from Hotel Reviews

arXiv.org Artificial Intelligence

Many hotels target guest acquisition efforts to specific markets in order to best anticipate individual preferences and needs of their guests. Likewise, such strategic positioning is a prerequisite for efficient marketing budget allocation. Official statistics report on the number of visitors from different countries, but no fine-grained information on the guest composition of individual businesses exists. There is, however, growing interest in such data from competitors, suppliers, researchers and the general public. We demonstrate how machine learning can be leveraged to extract references to guest nationalities from unstructured text reviews in order to dynamically assess and monitor the dynamics of guest composition of individual businesses. In particular, we show that a rather simple architecture of pre-trained embeddings and stacked LSTM layers provides a better performance-runtime tradeoff than more complex state-of-the-art language models.


Multi-channel MR Reconstruction (MC-MRRec) Challenge -- Comparing Accelerated MR Reconstruction Models and Assessing Their Genereralizability to Datasets Collected with Different Coils

arXiv.org Artificial Intelligence

The 2020 Multi-channel Magnetic Resonance Reconstruction (MC-MRRec) Challenge had two primary goals: 1) compare different MR image reconstruction models on a large dataset and 2) assess the generalizability of these models to datasets acquired with a different number of receiver coils (i.e., multiple channels). The challenge had two tracks: Track 01 focused on assessing models trained and tested with 12-channel data. Track 02 focused on assessing models trained with 12-channel data and tested on both 12-channel and 32-channel data. While the challenge is ongoing, here we describe the first edition of the challenge and summarise submissions received prior to 5 September 2020. Track 01 had five baseline models and received four independent submissions. Track 02 had two baseline models and received two independent submissions. This manuscript provides relevant comparative information on the current state-of-the-art of MR reconstruction and highlights the challenges of obtaining generalizable models that are required prior to clinical adoption. Both challenge tracks remain open and will provide an objective performance assessment for future submissions. Subsequent editions of the challenge are proposed to investigate new concepts and strategies, such as the integration of potentially available longitudinal information during the MR reconstruction process. An outline of the proposed second edition of the challenge is presented in this manuscript.