Goto

Collaborating Authors

 Goyal, Sanyam


The Art of Embedding Fusion: Optimizing Hate Speech Detection

arXiv.org Artificial Intelligence

Hate speech detection is a challenging natural language processing task that requires capturing linguistic and contextual nuances. Pre-trained language models (PLMs) offer rich semantic representations of text that can improve this task. However there is still limited knowledge about ways to effectively combine representations across PLMs and leverage their complementary strengths. In this work, we shed light on various combination techniques for several PLMs and comprehensively analyze their effectiveness. Our findings show that combining embeddings leads to slight improvements but at a high computational cost and the choice of combination has marginal effect on the final outcome.


Unsupervised Question Duplicate and Related Questions Detection in e-learning platforms

arXiv.org Artificial Intelligence

Online learning platforms provide diverse questions to gauge the learners' understanding of different concepts. The repository of questions has to be constantly updated to ensure a diverse pool of questions to conduct assessments for learners. However, it is impossible for the academician to manually skim through the large repository of questions to check for duplicates when onboarding new questions from external sources. Hence, we propose a tool QDup in this paper that can surface near-duplicate and semantically related questions without any supervised data. The proposed tool follows an unsupervised hybrid pipeline of statistical and neural approaches for incorporating different nuances in similarity for the task of question duplicate detection. We demonstrate that QDup can detect near-duplicate questions and also suggest related questions for practice with remarkable accuracy and speed from a large repository of questions. The demo video of the tool can be found at https://www.youtube.com/watch?v=loh0_-7XLW4.