Goto

Collaborating Authors

 Goyal, Sagar


Evaluate Summarization in Fine-Granularity: Auto Evaluation with LLM

arXiv.org Artificial Intelligence

Due to the exponential growth of information and the need for efficient information consumption the task of summarization has gained paramount importance. Evaluating summarization accurately and objectively presents significant challenges, particularly when dealing with long and unstructured texts rich in content. Existing methods, such as ROUGE (Lin, 2004) and embedding similarities, often yield scores that have low correlation with human judgements and are also not intuitively understandable, making it difficult to gauge the true quality of the summaries. LLMs can mimic human in giving subjective reviews but subjective scores are hard to interpret and justify. They can be easily manipulated by altering the models and the tones of the prompts. In this paper, we introduce a novel evaluation methodology and tooling designed to address these challenges, providing a more comprehensive, accurate and interpretable assessment of summarization outputs. Our method (SumAutoEval) proposes and evaluates metrics at varying granularity levels, giving objective scores on 4 key dimensions such as completeness, correctness, Alignment and readability. We empirically demonstrate, that SumAutoEval enhances the understanding of output quality with better human correlation.


A Continued Pretrained LLM Approach for Automatic Medical Note Generation

arXiv.org Artificial Intelligence

LLMs are revolutionizing NLP tasks. However, the use of the most advanced LLMs, such as GPT-4, is often prohibitively expensive for most specialized fields. We introduce HEAL, the first continuously trained 13B LLaMA2-based LLM that is purpose-built for medical conversations and measured on automated scribing. Our results demonstrate that HEAL outperforms GPT-4 and PMC-LLaMA in PubMedQA, with an accuracy of 78.4\%. It also achieves parity with GPT-4 in generating medical notes. Remarkably, HEAL surpasses GPT-4 and Med-PaLM 2 in identifying more correct medical concepts and exceeds the performance of human scribes and other comparable models in correctness and completeness.


CASPR: Customer Activity Sequence-based Prediction and Representation

arXiv.org Artificial Intelligence

Tasks critical to enterprise profitability, such as customer churn prediction, fraudulent account detection or customer lifetime value estimation, are often tackled by models trained on features engineered from customer data in tabular format. Application-specific feature engineering adds development, operationalization and maintenance costs over time. Recent advances in representation learning present an opportunity to simplify and generalize feature engineering across applications. When applying these advancements to tabular data researchers deal with data heterogeneity, variations in customer engagement history or the sheer volume of enterprise datasets. In this paper, we propose a novel approach to encode tabular data containing customer transactions, purchase history and other interactions into a generic representation of a customer's association with the business. We then evaluate these embeddings as features to train multiple models spanning a variety of applications. CASPR, Customer Activity Sequence-based Prediction and Representation, applies Transformer architecture to encode activity sequences to improve model performance and avoid bespoke feature engineering across applications.