Goto

Collaborating Authors

 Gourav, Aditya


Align-SLM: Textless Spoken Language Models with Reinforcement Learning from AI Feedback

arXiv.org Artificial Intelligence

While textless Spoken Language Models (SLMs) have shown potential in end-to-end speech-to-speech modeling, they still lag behind text-based Large Language Models (LLMs) in terms of semantic coherence and relevance. This work introduces the Align-SLM framework, which leverages preference optimization inspired by Reinforcement Learning with AI Feedback (RLAIF) to enhance the semantic understanding of SLMs. Our approach generates multiple speech continuations from a given prompt and uses semantic metrics to create preference data for Direct Preference Optimization (DPO). We evaluate the framework using ZeroSpeech 2021 benchmarks for lexical and syntactic modeling, the spoken version of the StoryCloze dataset for semantic coherence, and other speech generation metrics, including the GPT4-o score and human evaluation. Experimental results show that our method achieves state-of-the-art performance for SLMs on most benchmarks, highlighting the importance of preference optimization to improve the semantics of SLMs.


Speech Recognition Rescoring with Large Speech-Text Foundation Models

arXiv.org Artificial Intelligence

Large language models (LLM) have demonstrated the ability to understand human language by leveraging large amount of text data. Automatic speech recognition (ASR) systems are often limited by available transcribed speech data and benefit from a second pass rescoring using LLM. Recently multi-modal large language models, particularly speech and text foundational models have demonstrated strong spoken language understanding. Speech-Text foundational models leverage large amounts of unlabelled and labelled data both in speech and text modalities to model human language. In this work, we propose novel techniques to use multi-modal LLM for ASR rescoring. We also explore discriminative training to further improve the foundational model rescoring performance. We demonstrate cross-modal knowledge transfer in speech-text LLM can benefit rescoring. Our experiments demonstrate up-to 20% relative improvements over Whisper large ASR and up-to 15% relative improvements over text-only LLM.


Low-rank Adaptation of Large Language Model Rescoring for Parameter-Efficient Speech Recognition

arXiv.org Artificial Intelligence

However, as the size of the pretrained models increases, the cost associated We propose a neural language modeling system based on with fine-tuning and deploying these models for low-rank adaptation (LoRA) for speech recognition output real-world applications also escalates. To address this practical rescoring. Although pretrained language models (LMs) challenge, a range of parameter-efficient methods (e.g., like BERT have shown superior performance in second-pass adapters, model reprogramming, and prompts) have been proposed rescoring, the high computational cost of scaling up the pretraining [11, 12, 13, 14, 15, 16, 17, 18] to alleviate the computation stage and adapting the pretrained models to specific and memory demands of fine-tuning LLMs. Low-rank domains limit their practical use in rescoring. Here we present adaptation (LoRA) [19] freezes all pretrained parameters in a method based on low-rank decomposition to train a rescoring the LLM and inserts a trainable pair of matrices (acting as a BERT model and adapt it to new domains using only a low-rank decomposition of a full matrix) additively into each fraction (0.08%) of the pretrained parameters. These inserted layer of the Transformer architecture. Compared to other matrices are optimized through a discriminative training objective parameter-efficient training methods, such as adapters [12], along with a correlation-based regularization loss. The LoRA has two distinct advantages: 1) it employs a simple proposed low-rank adaptation RescoreBERT (LoRB) architecture architecture and has the potential to reduce the number of is evaluated on LibriSpeech and internal datasets with trainable parameters compared to alternatives; 2) LoRA does decreased training times by factors between 5.4 and 3.6.


Personalization for BERT-based Discriminative Speech Recognition Rescoring

arXiv.org Artificial Intelligence

Recognition of personalized content remains a challenge in end-to-end speech recognition. We explore three novel approaches that use personalized content in a neural rescoring step to improve recognition: gazetteers, prompting, and a cross-attention based encoder-decoder model. We use internal de-identified en-US data from interactions with a virtual voice assistant supplemented with personalized named entities to compare these approaches. On a test set with personalized named entities, we show that each of these approaches improves word error rate by over 10%, against a neural rescoring baseline. We also show that on this test set, natural language prompts can improve word error rate by 7% without any training and with a marginal loss in generalization. Overall, gazetteers were found to perform the best with a 10% improvement in word error rate (WER), while also improving WER on a general test set by 1%.


On-the-fly Text Retrieval for End-to-End ASR Adaptation

arXiv.org Artificial Intelligence

End-to-end speech recognition models are improved by incorporating external text sources, typically by fusion with an external language model. Such language models have to be retrained whenever the corpus of interest changes. Furthermore, since they store the entire corpus in their parameters, rare words can be challenging to recall. In this work, we propose augmenting a transducer-based ASR model with a retrieval language model, which directly retrieves from an external text corpus plausible completions for a partial ASR hypothesis. These completions are then integrated into subsequent predictions by an adapter, which is trained once, so that the corpus of interest can be switched without incurring the computational overhead of retraining. Our experiments show that the proposed model significantly improves the performance of a transducer baseline on a pair of question-answering datasets. Further, it outperforms shallow fusion on recognition of named entities by about 7 relative; when the two are combined, the relative improvement increases to 13%.