Goto

Collaborating Authors

 Gorban, Alexander N.


Stealth edits for provably fixing or attacking large language models

arXiv.org Artificial Intelligence

We reveal new methods and the theoretical foundations of techniques for editing large language models. We also show how the new theory can be used to assess the editability of models and to expose their susceptibility to previously unknown malicious attacks. Our theoretical approach shows that a single metric (a specific measure of the intrinsic dimensionality of the model's features) is fundamental to predicting the success of popular editing approaches, and reveals new bridges between disparate families of editing methods. We collectively refer to these approaches as stealth editing methods, because they aim to directly and inexpensively update a model's weights to correct the model's responses to known hallucinating prompts without otherwise affecting the model's behaviour, without requiring retraining. By carefully applying the insight gleaned from our theoretical investigation, we are able to introduce a new network block -- named a jet-pack block -- which is optimised for highly selective model editing, uses only standard network operations, and can be inserted into existing networks. The intrinsic dimensionality metric also determines the vulnerability of a language model to a stealth attack: a small change to a model's weights which changes its response to a single attacker-chosen prompt. Stealth attacks do not require access to or knowledge of the model's training data, therefore representing a potent yet previously unrecognised threat to redistributed foundation models. They are computationally simple enough to be implemented in malware in many cases. Extensive experimental results illustrate and support the method and its theoretical underpinnings.


What is Hiding in Medicine's Dark Matter? Learning with Missing Data in Medical Practices

arXiv.org Artificial Intelligence

Electronic patient records (EPRs) produce a wealth of data but contain significant missing information. Understanding and handling this missing data is an important part of clinical data analysis and if left unaddressed could result in bias in analysis and distortion in critical conclusions. Missing data may be linked to health care professional practice patterns and imputation of missing data can increase the validity of clinical decisions. This study focuses on statistical approaches for understanding and interpreting the missing data and machine learning based clinical data imputation using a single centre's paediatric emergency data and the data from UK's largest clinical audit for traumatic injury database (TARN). In the study of 56,961 data points related to initial vital signs and observations taken on children presenting to an Emergency Department, we have shown that missing data are likely to be non-random and how these are linked to health care professional practice patterns. We have then examined 79 TARN fields with missing values for 5,791 trauma cases. Singular Value Decomposition (SVD) and k-Nearest Neighbour (kNN) based missing data imputation methods are used and imputation results against the original dataset are compared and statistically tested. We have concluded that the 1NN imputer is the best imputation which indicates a usual pattern of clinical decision making: find the most similar patients and take their attributes as imputation.


Weakly Supervised Learners for Correction of AI Errors with Provable Performance Guarantees

arXiv.org Artificial Intelligence

We present a new methodology for handling AI errors by introducing weakly supervised AI error correctors with a priori performance guarantees. These AI correctors are auxiliary maps whose role is to moderate the decisions of some previously constructed underlying classifier by either approving or rejecting its decisions. The rejection of a decision can be used as a signal to suggest abstaining from making a decision. A key technical focus of the work is in providing performance guarantees for these new AI correctors through bounds on the probabilities of incorrect decisions. These bounds are distribution agnostic and do not rely on assumptions on the data dimension. Our empirical example illustrates how the framework can be applied to improve the performance of an image classifier in a challenging real-world task where training data are scarce.


Exploring the impact of social stress on the adaptive dynamics of COVID-19: Typing the behavior of na\"ive populations faced with epidemics

arXiv.org Artificial Intelligence

In the context of natural disasters, human responses inevitably intertwine with natural factors. The COVID-19 pandemic, as a significant stress factor, has brought to light profound variations among different countries in terms of their adaptive dynamics in addressing the spread of infection outbreaks across different regions. This emphasizes the crucial role of cultural characteristics in natural disaster analysis. The theoretical understanding of large-scale epidemics primarily relies on mean-field kinetic models. However, conventional SIR-like models failed to fully explain the observed phenomena at the onset of the COVID-19 outbreak. These phenomena included the unexpected cessation of exponential growth, the reaching of plateaus, and the occurrence of multi-wave dynamics. In situations where an outbreak of a highly virulent and unfamiliar infection arises, it becomes crucial to respond swiftly at a non-medical level to mitigate the negative socio-economic impact. Here we present a theoretical examination of the first wave of the epidemic based on a simple SIRSS model (SIR with Social Stress). We conduct an analysis of the socio-cultural features of na\"ive population behaviors across various countries worldwide. The unique characteristics of each country/territory are encapsulated in only a few constants within our model, derived from the fitted COVID-19 statistics. These constants also reflect the societal response dynamics to the external stress factor, underscoring the importance of studying the mutual behavior of humanity and natural factors during global social disasters. Based on these distinctive characteristics of specific regions, local authorities can optimize their strategies to effectively combat epidemics until vaccines are developed.


The Boundaries of Verifiable Accuracy, Robustness, and Generalisation in Deep Learning

arXiv.org Artificial Intelligence

In this work, we assess the theoretical limitations of determining guaranteed stability and accuracy of neural networks in classification tasks. We consider classical distribution-agnostic framework and algorithms minimising empirical risks and potentially subjected to some weights regularisation. We show that there is a large family of tasks for which computing and verifying ideal stable and accurate neural networks in the above settings is extremely challenging, if at all possible, even when such ideal solutions exist within the given class of neural architectures.


How adversarial attacks can disrupt seemingly stable accurate classifiers

arXiv.org Artificial Intelligence

Adversarial attacks dramatically change the output of an otherwise accurate learning system using a seemingly inconsequential modification to a piece of input data. Paradoxically, empirical evidence indicates that even systems which are robust to large random perturbations of the input data remain susceptible to small, easily constructed, adversarial perturbations of their inputs. Here, we show that this may be seen as a fundamental feature of classifiers working with high dimensional input data. We introduce a simple generic and generalisable framework for which key behaviours observed in practical systems arise with high probability -- notably the simultaneous susceptibility of the (otherwise accurate) model to easily constructed adversarial attacks, and robustness to random perturbations of the input data. We confirm that the same phenomena are directly observed in practical neural networks trained on standard image classification problems, where even large additive random noise fails to trigger the adversarial instability of the network. A surprising takeaway is that even small margins separating a classifier's decision surface from training and testing data can hide adversarial susceptibility from being detected using randomly sampled perturbations. Counterintuitively, using additive noise during training or testing is therefore inefficient for eradicating or detecting adversarial examples, and more demanding adversarial training is required.


Domain Adaptation Principal Component Analysis: base linear method for learning with out-of-distribution data

arXiv.org Artificial Intelligence

Domain adaptation is a popular paradigm in modern machine learning which aims at tackling the problem of divergence (or shift) between the labeled training and validation datasets (source domain) and a potentially large unlabeled dataset (target domain). The task is to embed both datasets red into a common space in which the source dataset is informative for training while the divergence between source and target is minimized. The most popular domain adaptation solutions are based on training neural networks that combine classification and adversarial learning modules, frequently making them both data-hungry and difficult to train. We present a method called Domain Adaptation Principal Component Analysis (DAPCA) that identifies a linear reduced data representation useful for solving the domain adaptation task. DAPCA algorithm introduces positive and negative weights between pairs of data points, and generalizes the supervised extension of principal component analysis. DAPCA is an iterative algorithm that solves a simple quadratic optimization problem at each iteration. The convergence of the algorithm is guaranteed, and the number of iterations is small in practice. We validate the suggested algorithm on previously proposed benchmarks for solving the domain adaptation task. We also show the benefit of using DAPCA in analyzing the single-cell omics datasets in biomedical applications. Overall, DAPCA can serve as a practical preprocessing step in many machine learning applications leading to reduced dataset representations, taking into account possible divergence between source and target domains.


Towards a mathematical understanding of learning from few examples with nonlinear feature maps

arXiv.org Artificial Intelligence

We consider the problem of data classification where the training set consists of just a few data points. We explore this phenomenon mathematically and reveal key relationships between the geometry of an AI model's feature space, the structure of the underlying data distributions, and the model's generalisation capabilities. The main thrust of our analysis is to reveal the influence on the model's generalisation capabilities of nonlinear feature transformations mapping the original data into high, and possibly infinite, dimensional spaces.


Scikit-dimension: a Python package for intrinsic dimension estimation

arXiv.org Machine Learning

Dealing with uncertainty in applications of machine learning to real-life data critically depends on the knowledge of intrinsic dimensionality (ID). A number of methods have been suggested for the purpose of estimating ID, but no standard package to easily apply them one by one or all at once has been implemented in Python. This technical note introduces \texttt{scikit-dimension}, an open-source Python package for intrinsic dimension estimation. \texttt{scikit-dimension} package provides a uniform implementation of most of the known ID estimators based on scikit-learn application programming interface to evaluate global and local intrinsic dimension, as well as generators of synthetic toy and benchmark datasets widespread in the literature. The package is developed with tools assessing the code quality, coverage, unit testing and continuous integration. We briefly describe the package and demonstrate its use in a large-scale (more than 500 datasets) benchmarking of methods for ID estimation in real-life and synthetic data. The source code is available from https://github.com/j-bac/scikit-dimension , the documentation is available from https://scikit-dimension.readthedocs.io .


High-dimensional separability for one- and few-shot learning

arXiv.org Artificial Intelligence

This work is driven by a practical question, corrections of Artificial Intelligence (AI) errors. Systematic re-training of a large AI system is hardly possible. To solve this problem, special external devices, correctors, are developed. They should provide quick and non-iterative system fix without modification of a legacy AI system. A common universal part of the AI corrector is a classifier that should separate undesired and erroneous behavior from normal operation. Training of such classifiers is a grand challenge at the heart of the one- and few-shot learning methods. Effectiveness of one- and few-short methods is based on either significant dimensionality reductions or the blessing of dimensionality effects. Stochastic separability is a blessing of dimensionality phenomenon that allows one-and few-shot error correction: in high-dimensional datasets under broad assumptions each point can be separated from the rest of the set by simple and robust linear discriminant. The hierarchical structure of data universe is introduced where each data cluster has a granular internal structure, etc. New stochastic separation theorems for the data distributions with fine-grained structure are formulated and proved. Separation theorems in infinite-dimensional limits are proven under assumptions of compact embedding of patterns into data space. New multi-correctors of AI systems are presented and illustrated with examples of predicting errors and learning new classes of objects by a deep convolutional neural network.