Goto

Collaborating Authors

 Gopal, Senthilkumar


Multi class activity classification in videos using Motion History Image generation

arXiv.org Artificial Intelligence

Human action recognition has been a topic of interest across multiple fields ranging from security to entertainment systems. Tracking the motion and identifying the action being performed on a real time basis is necessary for critical security systems. In entertainment, especially gaming, the need for immediate responses for actions and gestures are paramount for the success of that system. We show that Motion History image has been a well established framework to capture the temporal and activity information in multi dimensional detail enabling various usecases including classification. We utilize MHI to produce sample data to train a classifier and demonstrate its effectiveness for action classification across six different activities in a single multi-action video. We analyze the classifier performance and identify usecases where MHI struggles to generate the appropriate activity image and discuss mechanisms and future work to overcome those limitations.


Classic algorithms are fair learners: Classification Analysis of natural weather and wildfire occurrences

arXiv.org Artificial Intelligence

Classic machine learning algorithms have been reviewed and studied mathematically on its performance and properties in detail. This paper intends to review the empirical functioning of widely used classical supervised learning algorithms such as Decision Trees, Boosting, Support Vector Machines, k-nearest Neighbors and a shallow Artificial Neural Network. The paper evaluates these algorithms on a sparse tabular data for classification task and observes the effect on specific hyperparameters on these algorithms when the data is synthetically modified for higher noise. These perturbations were introduced to observe these algorithms on their efficiency in generalizing for sparse data and their utility of different parameters to improve classification accuracy. The paper intends to show that these classic algorithms are fair learners even for such limited data due to their inherent properties even for noisy and sparse datasets.