Goodwin, Walter
You Only Look at One: Category-Level Object Representations for Pose Estimation From a Single Example
Goodwin, Walter, Havoutis, Ioannis, Posner, Ingmar
In order to meaningfully interact with the world, robot manipulators must be able to interpret objects they encounter. A critical aspect of this interpretation is pose estimation: inferring quantities that describe the position and orientation of an object in 3D space. Most existing approaches to pose estimation make limiting assumptions, often working only for specific, known object instances, or at best generalising to an object category using large pose-labelled datasets. In this work, we present a method for achieving category-level pose estimation by inspection of just a single object from a desired category. We show that we can subsequently perform accurate pose estimation for unseen objects from an inspected category, and considerably outperform prior work by exploiting multi-view correspondences. We demonstrate that our method runs in real-time, enabling a robot manipulator equipped with an RGBD sensor to perform online 6D pose estimation for novel objects. Finally, we showcase our method in a continual learning setting, with a robot able to determine whether objects belong to known categories, and if not, use active perception to produce a one-shot category representation for subsequent pose estimation.
Priors, Hierarchy, and Information Asymmetry for Skill Transfer in Reinforcement Learning
Salter, Sasha, Hartikainen, Kristian, Goodwin, Walter, Posner, Ingmar
The ability to discover behaviours from past experience and transfer them to new tasks is a hallmark of intelligent agents acting sample-efficiently in the real world. Equipping embodied reinforcement learners with the same ability may be crucial for their successful deployment in robotics. While hierarchical and KL-regularized RL individually hold promise here, arguably a hybrid approach could combine their respective benefits. Key to these fields is the use of information asymmetry to bias which skills are learnt. While asymmetric choice has a large influence on transferability, prior works have explored a narrow range of asymmetries, primarily motivated by intuition. In this paper, we theoretically and empirically show the crucial trade-off, controlled by information asymmetry, between the expressivity and transferability of skills across sequential tasks. Given this insight, we provide a principled approach towards choosing asymmetry and apply our approach to a complex, robotic block stacking domain, unsolvable by baselines, demonstrating the effectiveness of hierarchical KL-regularized RL, coupled with correct asymmetric choice, for sample-efficient transfer learning.