Goto

Collaborating Authors

 Goo, Wonjoon


A Ranking Game for Imitation Learning

arXiv.org Artificial Intelligence

We propose a new framework for imitation learning - treating imitation as a two-player ranking-based Stackelberg game between a $\textit{policy}$ and a $\textit{reward}$ function. In this game, the reward agent learns to satisfy pairwise performance rankings within a set of policies, while the policy agent learns to maximize this reward. This game encompasses a large subset of both inverse reinforcement learning (IRL) methods and methods which learn from offline preferences. The Stackelberg game formulation allows us to use optimization methods that take the game structure into account, leading to more sample efficient and stable learning dynamics compared to existing IRL methods. We theoretically analyze the requirements of the loss function used for ranking policy performances to facilitate near-optimal imitation learning at equilibrium. We use insights from this analysis to further increase sample efficiency of the ranking game by using automatically generated rankings or with offline annotated rankings. Our experiments show that the proposed method achieves state-of-the-art sample efficiency and is able to solve previously unsolvable tasks in the Learning from Observation (LfO) setting.


Ranking-Based Reward Extrapolation without Rankings

arXiv.org Machine Learning

The performance of imitation learning is typically upper-bounded by the performance of the demonstrator. Recent empirical results show that imitation learning via ranked demonstrations allows for better-than-demonstrator performance; however, ranked demonstrations may be difficult to obtain, and little is known theoretically about when such methods can be expected to outperform the demonstrator. To address these issues, we first contribute a sufficient condition for when better-than-demonstrator performance is possible and discuss why ranked demonstrations can contribute to better-than-demonstrator performance. Building on this theory, we then introduce Disturbance-based Reward Extrapolation (D-REX), a ranking-based imitation learning method that injects noise into a policy learned through behavioral cloning to automatically generate ranked demonstrations. By generating rankings automatically, ranking-based imitation learning can be applied in traditional imitation learning settings where only unlabeled demonstrations are available. We empirically validate our approach on standard MuJoCo and Atari benchmarks and show that D-REX can utilize automatic rankings to significantly surpass the performance of the demonstrator and outperform standard imitation learning approaches. D-REX is the first imitation learning approach to achieve significant extrapolation beyond the demonstrator's performance without additional side-information or supervision, such as rewards or human preferences.


Extrapolating Beyond Suboptimal Demonstrations via Inverse Reinforcement Learning from Observations

arXiv.org Machine Learning

A critical flaw of existing inverse reinforcement learning (IRL) methods is their inability to significantly outperform the demonstrator. This is a consequence of the general reliance of IRL algorithms upon some form of mimicry, such as feature-count matching, rather than inferring the underlying intentions of the demonstrator that may have been poorly executed in practice. In this paper, we introduce a novel reward learning from observation algorithm, Trajectory-ranked Reward EXtrapolation (T-REX), that extrapolates beyond a set of (approximately) ranked demonstrations in order to infer high-quality reward functions from a set of potentially poor demonstrations. When combined with deep reinforcement learning, we show that this approach can achieve performance that is more than an order of magnitude better than the best-performing demonstration, on multiple Atari and MuJoCo benchmark tasks. In contrast, prior state-of-the-art imitation learning and IRL methods fail to perform better than the demonstrator and often have performance that is orders of magnitude worse than T-REX. Finally, we demonstrate that T-REX is robust to modest amounts of ranking noise and can accurately extrapolate intention by simply watching a learner noisily improve at a task over time.


Learning Multi-Step Robotic Tasks from Observation

arXiv.org Machine Learning

Due to burdensome data requirements, learning from demonstration often falls short of its promise to allow users to quickly and naturally program robots. Demonstrations are inherently ambiguous and incomplete, making a correct generalization to unseen situations difficult without a large number of demonstrations in varying conditions. By contrast, humans are often able to learn complex tasks from a single demonstration (typically observations without action labels) by leveraging context learned over a lifetime. Inspired by this capability, we aim to enable robots to perform one-shot learning of multi-step tasks from observation by leveraging auxiliary video data as context. Our primary contribution is a novel action localization algorithm that identifies clips of activities in auxiliary videos that match the activities in a user-segmented demonstration, providing additional examples of each. While this auxiliary video data could be used in multiple ways for learning, we focus on an inverse reinforcement learning setting. We empirically show that across several tasks, robots can learn multi-step tasks more effectively from videos with localized actions, compared to unsegmented videos.