Goto

Collaborating Authors

 Gonzalo, Julio


None of the Others: a General Technique to Distinguish Reasoning from Memorization in Multiple-Choice LLM Evaluation Benchmarks

arXiv.org Artificial Intelligence

In LLM evaluations, reasoning is often distinguished from recall/memorization by performing numerical variations to math-oriented questions. Here we introduce a general variation method for multiple-choice questions that completely dissociates the correct answer from previously seen tokens or concepts, requiring LLMs to understand and reason (rather than memorizing) in order to answer correctly. Using this method, we evaluate state-of-the-art proprietary and open-source LLMs on two datasets available in English and Spanish: the public MMLU benchmark and the private UNED-Access 2024 dataset. Results show that all models experience remarkable accuracy drops under our proposed variation, with an average loss of 57% on MMLU and 50% on UNED-Access 2024, ranging from 10% to 93% across models. Notably, the most accurate model in our experimentation (OpenAI-o3-mini) is not the most robust (DeepSeek-R1-70B), suggesting that the best models in standard evaluations may not be the ones with better reasoning capabilities. Also, we see larger accuracy drops in public (vs private) datasets and questions posed in their original language (vs a manual translation), which are signs of contamination and also point to a relevant role of recall/memorization in current LLMs' answers.


The Uned systems at Senseval-2

arXiv.org Artificial Intelligence

We have participated in the SENSEVAL-2 English tasks (all words and lexical sample) with an unsupervised system based on mutual information measured over a large corpus (277 million words) and some additional heuristics. A supervised extension of the system was also presented to the lexical sample task. Our system scored first among unsupervised systems in both tasks: 56.9% recall in all words, 40.2% in lexical sample. This is slightly worse than the first sense heuristic for all words and 3.6% better for the lexical sample, a strong indication that unsupervised Word Sense Disambiguation remains being a strong challenge.