Goto

Collaborating Authors

 Gonzalez, Sebastian Rojas


Constrained multi-objective optimization of process design parameters in settings with scarce data: an application to adhesive bonding

arXiv.org Artificial Intelligence

Adhesive joints are increasingly used in industry for a wide variety of applications because of their favorable characteristics such as high strength-to-weight ratio, design flexibility, limited stress concentrations, planar force transfer, good damage tolerance, and fatigue resistance. Finding the optimal process parameters for an adhesive bonding process is challenging: the optimization is inherently multi-objective (aiming to maximize break strength while minimizing cost), constrained (the process should not result in any visual damage to the materials, and stress tests should not result in failures that are adhesion-related), and uncertain (testing the same process parameters several times may lead to different break strengths). Real-life physical experiments in the lab are expensive to perform. Traditional evolutionary approaches (such as genetic algorithms) are then ill-suited to solve the problem, due to the prohibitive amount of experiments required for evaluation. Although Bayesian optimization-based algorithms are preferred to solve such expensive problems, few methods consider the optimization of more than one (noisy) objective and several constraints at the same time. In this research, we successfully applied specific machine learning techniques (Gaussian Process Regression) to emulate the objective and constraint functions based on a limited amount of experimental data. The techniques are embedded in a Bayesian optimization algorithm, which succeeds in detecting Pareto-optimal process settings in a highly efficient way (i.e., requiring a limited number of physical experiments).


Bayesian Optimization of Multiple Objectives with Different Latencies

arXiv.org Artificial Intelligence

Multi-objective Bayesian optimization aims to find the Pareto front of optimal trade-offs between a set of expensive objectives while collecting as few samples as possible. In some cases, it is possible to evaluate the objectives separately, and a different latency or evaluation cost can be associated with each objective. This presents an opportunity to learn the Pareto front faster by evaluating the cheaper objectives more frequently. We propose a scalarization based knowledge gradient acquisition function which accounts for the different evaluation costs of the objectives. We prove consistency of the algorithm and show empirically that it significantly outperforms a benchmark algorithm which always evaluates both objectives.


A survey on multi-objective hyperparameter optimization algorithms for Machine Learning

arXiv.org Artificial Intelligence

Hyperparameter optimization (HPO) is a necessary step to ensure the best possible performance of Machine Learning (ML) algorithms. Several methods have been developed to perform HPO; most of these are focused on optimizing one performance measure (usually an error-based measure), and the literature on such single-objective HPO problems is vast. Recently, though, algorithms have appeared which focus on optimizing multiple conflicting objectives simultaneously. This article presents a systematic survey of the literature published between 2014 and 2020 on multi-objective HPO algorithms, distinguishing between metaheuristic-based algorithms, metamodel-based algorithms, and approaches using a mixture of both. We also discuss the quality metrics used to compare multi-objective HPO procedures and present future research directions.