Gonzalez, Martin
A finite-sample generalization bound for stable LPV systems
Racz, Daniel, Gonzalez, Martin, Petreczky, Mihaly, Benczur, Andras, Daroczy, Balint
One of the main theoretical challenges in learning dynamical systems from data is providing upper bounds on the generalization error, that is, the difference between the expected prediction error and the empirical prediction error measured on some finite sample. In machine learning, a popular class of such bounds are the so-called Probably Approximately Correct (PAC) bounds. In this paper, we derive a PAC bound for stable continuous-time linear parameter-varying (LPV) systems. Our bound depends on the H2 norm of the chosen class of the LPV systems, but does not depend on the time interval for which the signals are considered.
SEEDS: Exponential SDE Solvers for Fast High-Quality Sampling from Diffusion Models
Gonzalez, Martin, Fernandez, Nelson, Tran, Thuy, Gherbi, Elies, Hajri, Hatem, Masmoudi, Nader
A potent class of generative models known as Diffusion Probabilistic Models (DPMs) has become prominent. A forward diffusion process adds gradually noise to data, while a model learns to gradually denoise. Sampling from pre-trained DPMs is obtained by solving differential equations (DE) defined by the learnt model, a process which has shown to be prohibitively slow. Numerous efforts on speeding-up this process have consisted on crafting powerful ODE solvers. Despite being quick, such solvers do not usually reach the optimal quality achieved by available slow SDE solvers. Our goal is to propose SDE solvers that reach optimal quality without requiring several hundreds or thousands of NFEs to achieve that goal. We propose Stochastic Explicit Exponential Derivative-free Solvers (SEEDS), improving and generalizing Exponential Integrator approaches to the stochastic case on several frameworks. After carefully analyzing the formulation of exact solutions of diffusion SDEs, we craft SEEDS to analytically compute the linear part of such solutions. Inspired by the Exponential Time-Differencing method, SEEDS use a novel treatment of the stochastic components of solutions, enabling the analytical computation of their variance, and contains high-order terms allowing to reach optimal quality sampling $\sim3$-$5\times$ faster than previous SDE methods. We validate our approach on several image generation benchmarks, showing that SEEDS outperform or are competitive with previous SDE solvers. Contrary to the latter, SEEDS are derivative and training free, and we fully prove strong convergence guarantees for them.
Realization Theory Of Recurrent Neural ODEs Using Polynomial System Embeddings
Gonzalez, Martin, Defourneau, Thibault, Hajri, Hatem, Petreczky, Mihaly
In this paper we show that neural ODE analogs of recurrent (ODE-RNN) and Long Short-Term Memory (ODE-LSTM) networks can be algorithmically embeddeded into the class of polynomial systems. This embedding preserves input-output behavior and can suitably be extended to other neural DE architectures. We then use realization theory of polynomial systems to provide necessary conditions for an input-output map to be realizable by an ODE-LSTM and sufficient conditions for minimality of such systems. These results represent the first steps towards realization theory of recurrent neural ODE architectures, which is is expected be useful for model reduction and learning algorithm analysis of recurrent neural ODEs.