Goto

Collaborating Authors

 Gonnet, Pedro


TF-GNN: Graph Neural Networks in TensorFlow

arXiv.org Artificial Intelligence

TensorFlow-GNN (TF-GNN) is a scalable library for Graph Neural Networks in TensorFlow. It is designed from the bottom up to support the kinds of rich heterogeneous graph data that occurs in today's information ecosystems. In addition to enabling machine learning researchers and advanced developers, TF-GNN offers low-code solutions to empower the broader developer community in graph learning. Many production models at Google use TF-GNN, and it has been recently released as an open source project. In this paper we describe the TF-GNN data model, its Keras message passing API, and relevant capabilities such as graph sampling and distributed training.


IndyLSTMs: Independently Recurrent LSTMs

arXiv.org Machine Learning

We introduce Independently Recurrent Long Short-term Memory cells: IndyLSTMs. These differ from regular LSTM cells in that the recurrent weights are not modeled as a full matrix, but as a diagonal matrix, i.e.\ the output and state of each LSTM cell depends on the inputs and its own output/state, as opposed to the input and the outputs/states of all the cells in the layer. The number of parameters per IndyLSTM layer, and thus the number of FLOPS per evaluation, is linear in the number of nodes in the layer, as opposed to quadratic for regular LSTM layers, resulting in potentially both smaller and faster models. We evaluate their performance experimentally by training several models on the popular \iamondb and CASIA online handwriting datasets, as well as on several of our in-house datasets. We show that IndyLSTMs, despite their smaller size, consistently outperform regular LSTMs both in terms of accuracy per parameter, and in best accuracy overall. We attribute this improved performance to the IndyLSTMs being less prone to overfitting.


Fast Multi-language LSTM-based Online Handwriting Recognition

arXiv.org Machine Learning

Hindi writing often Given a user input in the form of an ink, i.e. a list of contains a connecting'Shirorekha' line and characters touch or pen strokes, output the textual interpretation can form larger structures (grapheme clusters) which of this input. A stroke is a sequence of points (x, y, t) influence the written shape of the components. Arabic with position (x, y) and timestamp t. is written right-to-left (with embedded left-to-right sequences Figure 1 illustrates example inputs to our online used for numbers or English names) and characters handwriting recognition system in different languages change shape depending on their position within and scripts. The left column shows examples in English a word. Emoji are non-text Unicode symbols that we with different writing styles, with different types also recognize. of content, and that may be written on one or multiple lines. The center column shows examples from Online handwriting recognition has recently been five different alphabetic languages similar in structure gaining importance for multiple reasons: (a) An increasing to English: German, Russian, Vietnamese, Greek, and number of people in emerging markets are obtaining Georgian. The right column shows scripts that are significantly access to computing devices, many exclusively using different from English: Chinese has a much mobile devices with touchscreens. Many of these users larger set of more complex characters, and users often have native languages and scripts that are not as easily overlap characters with one another. Korean, while an typed as English, e.g.