Gongguo Tang
The Landscape of Non-convex Empirical Risk with Degenerate Population Risk
Shuang Li, Gongguo Tang, Michael B. Wakin
The landscape of empirical risk has been widely studied in a series of machine learning problems, including low-rank matrix factorization, matrix sensing, matrix completion, and phase retrieval. In this work, we focus on the situation where the corresponding population risk is a degenerate non-convex loss function, namely, the Hessian of the population risk can have zero eigenvalues. Instead of analyzing the non-convex empirical risk directly, we first study the landscape of the corresponding population risk, which is usually easier to characterize, and then build a connection between the landscape of the empirical risk and its population risk. In particular, we establish a correspondence between the critical points of the empirical risk and its population risk without the strongly Morse assumption, which is required in existing literature but not satisfied in degenerate scenarios. We also apply the theory to matrix sensing and phase retrieval to demonstrate how to infer the landscape of empirical risk from that of the corresponding population risk.
Distributed Low-rank Matrix Factorization With Exact Consensus
Zhihui Zhu, Qiuwei Li, Xinshuo Yang, Gongguo Tang, Michael B. Wakin
Low-rank matrix factorization is a problem of broad importance, owing to the ubiquity of low-rank models in machine learning contexts. In spite of its nonconvexity, this problem has a well-behaved geometric landscape, permitting local search algorithms such as gradient descent to converge to global minimizers. In this paper, we study low-rank matrix factorization in the distributed setting, where local variables at each node encode parts of the overall matrix factors, and consensus is encouraged among certain such variables. We identify conditions under which this new problem also has a well-behaved geometric landscape, and we propose an extension of distributed gradient descent (DGD) to solve this problem. The favorable landscape allows us to prove convergence to global optimality with exact consensus, a stronger result than what is provided by off-the-shelf DGD theory.
The Landscape of Non-convex Empirical Risk with Degenerate Population Risk
Shuang Li, Gongguo Tang, Michael B. Wakin
The landscape of empirical risk has been widely studied in a series of machine learning problems, including low-rank matrix factorization, matrix sensing, matrix completion, and phase retrieval. In this work, we focus on the situation where the corresponding population risk is a degenerate non-convex loss function, namely, the Hessian of the population risk can have zero eigenvalues. Instead of analyzing the non-convex empirical risk directly, we first study the landscape of the corresponding population risk, which is usually easier to characterize, and then build a connection between the landscape of the empirical risk and its population risk. In particular, we establish a correspondence between the critical points of the empirical risk and its population risk without the strongly Morse assumption, which is required in existing literature but not satisfied in degenerate scenarios. We also apply the theory to matrix sensing and phase retrieval to demonstrate how to infer the landscape of empirical risk from that of the corresponding population risk.