Gong, Xuan
DAMRO: Dive into the Attention Mechanism of LVLM to Reduce Object Hallucination
Gong, Xuan, Ming, Tianshi, Wang, Xinpeng, Wei, Zhihua
Despite the great success of Large Vision-Language Models (LVLMs), they inevitably suffer from hallucination. As we know, both the visual encoder and the Large Language Model (LLM) decoder in LVLMs are Transformer-based, allowing the model to extract visual information and generate text outputs via attention mechanisms. We find that the attention distribution of LLM decoder on image tokens is highly consistent with the visual encoder and both distributions tend to focus on particular background tokens rather than the referred objects in the image. We attribute to the unexpected attention distribution to an inherent flaw in the visual encoder itself, which misguides LLMs to over emphasize the redundant information and generate object hallucination. To address the issue, we propose DAMRO, a novel training-free strategy that $D$ive into $A$ttention $M$echanism of LVLM to $R$educe $O$bject Hallucination. Specifically, our approach employs classification token (CLS) of ViT to filter out high-attention outlier tokens scattered in the background and then eliminate their influence during decoding stage. We evaluate our method on LVLMs including LLaVA-1.5, LLaVA-NeXT and InstructBLIP, using various benchmarks such as POPE, CHAIR, MME and GPT-4V Aided Evaluation. The results demonstrate that our approach significantly reduces the impact of these outlier tokens, thus effectively alleviating the hallucination of LVLMs. The code of our method will be released soon.
Federated Learning via Input-Output Collaborative Distillation
Gong, Xuan, Li, Shanglin, Bao, Yuxiang, Yao, Barry, Huang, Yawen, Wu, Ziyan, Zhang, Baochang, Zheng, Yefeng, Doermann, David
Federated learning (FL) is a machine learning paradigm in which distributed local nodes collaboratively train a central model without sharing individually held private data. Existing FL methods either iteratively share local model parameters or deploy co-distillation. However, the former is highly susceptible to private data leakage, and the latter design relies on the prerequisites of task-relevant real data. Instead, we propose a data-free FL framework based on local-to-central collaborative distillation with direct input and output space exploitation. Our design eliminates any requirement of recursive local parameter exchange or auxiliary task-relevant data to transfer knowledge, thereby giving direct privacy control to local users. In particular, to cope with the inherent data heterogeneity across locals, our technique learns to distill input on which each local model produces consensual yet unique results to represent each expertise. Our proposed FL framework achieves notable privacy-utility trade-offs with extensive experiments on image classification and segmentation tasks under various real-world heterogeneous federated learning settings on both natural and medical images.
Decom--CAM: Tell Me What You See, In Details! Feature-Level Interpretation via Decomposition Class Activation Map
Yang, Yuguang, Guo, Runtang, Wu, Sheng, Wang, Yimi, Zhang, Juan, Gong, Xuan, Zhang, Baochang
Interpretation of deep learning remains a very challenging problem. Although the Class Activation Map (CAM) is widely used to interpret deep model predictions by highlighting object location, it fails to provide insight into the salient features used by the model to make decisions. Furthermore, existing evaluation protocols often overlook the correlation between interpretability performance and the model's decision quality, which presents a more fundamental issue. This paper proposes a new two-stage interpretability method called the Decomposition Class Activation Map (Decom-CAM), which offers a feature-level interpretation of the model's prediction. Decom-CAM decomposes intermediate activation maps into orthogonal features using singular value decomposition and generates saliency maps by integrating them. The orthogonality of features enables CAM to capture local features and can be used to pinpoint semantic components such as eyes, noses, and faces in the input image, making it more beneficial for deep model interpretation. To ensure a comprehensive comparison, we introduce a new evaluation protocol by dividing the dataset into subsets based on classification accuracy results and evaluating the interpretability performance on each subset separately. Our experiments demonstrate that the proposed Decom-CAM outperforms current state-of-the-art methods significantly by generating more precise saliency maps across all levels of classification accuracy. Combined with our feature-level interpretability approach, this paper could pave the way for a new direction for understanding the decision-making process of deep neural networks.
PREF: Predictability Regularized Neural Motion Fields
Song, Liangchen, Gong, Xuan, Planche, Benjamin, Zheng, Meng, Doermann, David, Yuan, Junsong, Chen, Terrence, Wu, Ziyan
Knowing the 3D motions in a dynamic scene is essential to many vision applications. Recent progress is mainly focused on estimating the activity of some specific elements like humans. In this paper, we leverage a neural motion field for estimating the motion of all points in a multiview setting. Modeling the motion from a dynamic scene with multiview data is challenging due to the ambiguities in points of similar color and points with time-varying color. We propose to regularize the estimated motion to be predictable. If the motion from previous frames is known, then the motion in the near future should be predictable. Therefore, we introduce a predictability regularization by first conditioning the estimated motion on latent embeddings, then by adopting a predictor network to enforce predictability on the embeddings. The proposed framework PREF (Predictability REgularized Fields) achieves on par or better results than state-of-the-art neural motion field-based dynamic scene representation methods, while requiring no prior knowledge of the scene.
Progressive Multi-view Human Mesh Recovery with Self-Supervision
Gong, Xuan, Song, Liangchen, Zheng, Meng, Planche, Benjamin, Chen, Terrence, Yuan, Junsong, Doermann, David, Wu, Ziyan
To date, little attention has been given to multi-view 3D human mesh estimation, despite real-life applicability (e.g., motion capture, sport analysis) and robustness to single-view ambiguities. Existing solutions typically suffer from poor generalization performance to new settings, largely due to the limited diversity of image-mesh pairs in multi-view training data. To address this shortcoming, people have explored the use of synthetic images. But besides the usual impact of visual gap between rendered and target data, synthetic-data-driven multi-view estimators also suffer from overfitting to the camera viewpoint distribution sampled during training which usually differs from real-world distributions. Tackling both challenges, we propose a novel simulation-based training pipeline for multi-view human mesh recovery, which (a) relies on intermediate 2D representations which are more robust to synthetic-to-real domain gap; (b) leverages learnable calibration and triangulation to adapt to more diversified camera setups; and (c) progressively aggregates multi-view information in a canonical 3D space to remove ambiguities in 2D representations. Through extensive benchmarking, we demonstrate the superiority of the proposed solution especially for unseen in-the-wild scenarios.
A Review of Recent Advances of Binary Neural Networks for Edge Computing
Zhao, Wenyu, Ma, Teli, Gong, Xuan, Zhang, Baochang, Doermann, David
Abstract--Edge computing is promising to become one of the next hottest topics in artificial intelligence because it benefits various evolving domains such as real-time unmanned aerial systems, industrial applications, and the demand for privacy protection. This paper reviews recent advances on binary neural network (BNN) and 1-bit CNN technologies that are well suitable for front-end, edge-based computing. We introduce and summarize existing work and classify them based on gradient approximation, quantization, architecture, loss functions, optimization method, and binary neural architecture search. We also introduce applications in the areas of computer vision and speech recognition and discuss future applications for edge computing. ITH the rapid development of information technology, cloud computing with centralized data processing cannot the performance of binary neural networks. To better review meet the needs of applications that require the processing these methods, we six aspects including gradient approximation, of massive amounts of data, nor can they be effectively used quantization, structural design, loss design, optimization, when privacy requires the data to remain at the source. Finally, we will also edge computing has become an alternative to handle the data review object detection, object tracking, and audio analysis from front-end or embedded devices.