Goto

Collaborating Authors

 Gong, Pinghua


Meta Graph Attention on Heterogeneous Graph with Node-Edge Co-evolution

arXiv.org Machine Learning

Graph neural networks have become an important tool for modeling structured data. In many real-world systems, intricate hidden information may exist, e.g., heterogeneity in nodes/edges, static node/edge attributes, and spatiotemporal node/edge features. However, most existing methods only take part of the information into consideration. In this paper, we present the Co-evolved Meta Graph Neural Network (CoMGNN), which applies meta graph attention to heterogeneous graphs with co-evolution of node and edge states. We further propose a spatiotemporal adaption of CoMGNN (ST-CoMGNN) for modeling spatiotemporal patterns on nodes and edges. We conduct experiments on two large-scale real-world datasets. Experimental results show that our models significantly outperform the state-of-the-art methods, demonstrating the effectiveness of encoding diverse information from different aspects.


Learning from Very Few Samples: A Survey

arXiv.org Machine Learning

Few sample learning (FSL) is significant and challenging in the field of machine learning. The capability of learning and generalizing from very few samples successfully is a noticeable demarcation separating artificial intelligence and human intelligence since humans can readily establish their cognition to novelty from just a single or a handful of examples whereas machine learning algorithms typically entail hundreds or thousands of supervised samples to guarantee generalization ability. Despite the long history dated back to the early 2000s and the widespread attention in recent years with booming deep learning technologies, little surveys or reviews for FSL are available until now. In this context, we extensively review 300+ papers of FSL spanning from the 2000s to 2019 and provide a timely and comprehensive survey for FSL. In this survey, we review the evolution history as well as the current progress on FSL, categorize FSL approaches into the generative model based and discriminative model based kinds in principle, and emphasize particularly on the meta learning based FSL approaches. We also summarize several recently emerging extensional topics of FSL and review the latest advances on these topics. Furthermore, we highlight the important FSL applications covering many research hotspots in computer vision, natural language processing, audio and speech, reinforcement learning and robotic, data analysis, etc. Finally, we conclude the survey with a discussion on promising trends in the hope of providing guidance and insights to follow-up researches.


Deep Multi-View Spatial-Temporal Network for Taxi Demand Prediction

arXiv.org Machine Learning

Taxi demand prediction is an important building block to enabling intelligent transportation systems in a smart city. An accurate prediction model can help the city pre-allocate resources to meet travel demand and to reduce empty taxis on streets which waste energy and worsen the traffic congestion. With the increasing popularity of taxi requesting services such as Uber and Didi Chuxing (in China), we are able to collect large-scale taxi demand data continuously. How to utilize such big data to improve the demand prediction is an interesting and critical real-world problem. Traditional demand prediction methods mostly rely on time series forecasting techniques, which fail to model the complex non-linear spatial and temporal relations. Recent advances in deep learning have shown superior performance on traditionally challenging tasks such as image classification by learning the complex features and correlations from large-scale data. This breakthrough has inspired researchers to explore deep learning techniques on traffic prediction problems. However, existing methods on traffic prediction have only considered spatial relation (e.g., using CNN) or temporal relation (e.g., using LSTM) independently. We propose a Deep Multi-View Spatial-Temporal Network (DMVST-Net) framework to model both spatial and temporal relations. Specifically, our proposed model consists of three views: temporal view (modeling correlations between future demand values with near time points via LSTM), spatial view (modeling local spatial correlation via local CNN), and semantic view (modeling correlations among regions sharing similar temporal patterns). Experiments on large-scale real taxi demand data demonstrate effectiveness of our approach over state-of-the-art methods.


Deep Multi-View Spatial-Temporal Network for Taxi Demand Prediction

AAAI Conferences

Taxi demand prediction is an important building block to enabling intelligent transportation systems in a smart city. An accurate prediction model can help the city pre-allocate resources to meet travel demand and to reduce empty taxis on streets which waste energy and worsen the traffic congestion. With the increasing popularity of taxi requesting services such as Uber and Didi Chuxing (in China), we are able to collect large-scale taxi demand data continuously. How to utilize such big data to improve the demand prediction is an interesting and critical real-world problem. Traditional demand prediction methods mostly rely on time series forecasting techniques, which fail to model the complex non-linear spatial and temporal relations. Recent advances in deep learning have shown superior performance on traditionally challenging tasks such as image classification by learning the complex features and correlations from large-scale data. This breakthrough has inspired researchers to explore deep learning techniques on traffic prediction problems. However, existing methods on traffic prediction have only considered spatial relation (e.g., using CNN) or temporal relation (e.g., using LSTM) independently. We propose a Deep Multi-View Spatial-Temporal Network (DMVST-Net) framework to model both spatial and temporal relations. Specifically, our proposed model consists of three views: temporal view (modeling correlations between future demand values with near time points via LSTM), spatial view (modeling local spatial correlation via local CNN), and semantic view (modeling correlations among regions sharing similar temporal patterns). Experiments on large-scale real taxi demand data demonstrate effectiveness of our approach over state-of-the-art methods.


HONOR: Hybrid Optimization for NOn-convex Regularized problems

Neural Information Processing Systems

Recent years have witnessed the superiority of non-convex sparse learning formulations over their convex counterparts in both theory and practice. However, due to the non-convexity and non-smoothness of the regularizer, how to efficiently solve the non-convex optimization problem for large-scale data is still quite challenging. In this paper, we propose an efficient \underline{H}ybrid \underline{O}ptimization algorithm for \underline{NO}n convex \underline{R}egularized problems (HONOR). Specifically, we develop a hybrid scheme which effectively integrates a Quasi-Newton (QN) step and a Gradient Descent (GD) step. Our contributions are as follows: (1) HONOR incorporates the second-order information to greatly speed up the convergence, while it avoids solving a regularized quadratic programming and only involves matrix-vector multiplications without explicitly forming the inverse Hessian matrix. (2) We establish a rigorous convergence analysis for HONOR, which shows that convergence is guaranteed even for non-convex problems, while it is typically challenging to analyze the convergence for non-convex problems. (3) We conduct empirical studies on large-scale data sets and results demonstrate that HONOR converges significantly faster than state-of-the-art algorithms.


Linear Convergence of Variance-Reduced Stochastic Gradient without Strong Convexity

arXiv.org Machine Learning

Stochastic gradient algorithms estimate the gradient based on only one or a few samples and enjoy low computational cost per iteration. They have been widely used in large-scale optimization problems. However, stochastic gradient algorithms are usually slow to converge and achieve sub-linear convergence rates, due to the inherent variance in the gradient computation. To accelerate the convergence, some variance-reduced stochastic gradient algorithms, e.g., proximal stochastic variance-reduced gradient (Prox-SVRG) algorithm, have recently been proposed to solve strongly convex problems. Under the strongly convex condition, these variance-reduced stochastic gradient algorithms achieve a linear convergence rate. However, many machine learning problems are convex but not strongly convex. In this paper, we introduce Prox-SVRG and its projected variant called Variance-Reduced Projected Stochastic Gradient (VRPSG) to solve a class of non-strongly convex optimization problems widely used in machine learning. As the main technical contribution of this paper, we show that both VRPSG and Prox-SVRG achieve a linear convergence rate without strong convexity. A key ingredient in our proof is a Semi-Strongly Convex (SSC) inequality which is the first to be rigorously proved for a class of non-strongly convex problems in both constrained and regularized settings. Moreover, the SSC inequality is independent of algorithms and may be applied to analyze other stochastic gradient algorithms besides VRPSG and Prox-SVRG, which may be of independent interest. To the best of our knowledge, this is the first work that establishes the linear convergence rate for the variance-reduced stochastic gradient algorithms on solving both constrained and regularized problems without strong convexity.


A General Iterative Shrinkage and Thresholding Algorithm for Non-convex Regularized Optimization Problems

arXiv.org Machine Learning

Non-convex sparsity-inducing penalties have recently received considerable attentions in sparse learning. Recent theoretical investigations have demonstrated their superiority over the convex counterparts in several sparse learning settings. However, solving the non-convex optimization problems associated with non-convex penalties remains a big challenge. A commonly used approach is the Multi-Stage (MS) convex relaxation (or DC programming), which relaxes the original non-convex problem to a sequence of convex problems. This approach is usually not very practical for large-scale problems because its computational cost is a multiple of solving a single convex problem. In this paper, we propose a General Iterative Shrinkage and Thresholding (GIST) algorithm to solve the nonconvex optimization problem for a large class of non-convex penalties. The GIST algorithm iteratively solves a proximal operator problem, which in turn has a closed-form solution for many commonly used penalties. At each outer iteration of the algorithm, we use a line search initialized by the Barzilai-Borwein (BB) rule that allows finding an appropriate step size quickly. The paper also presents a detailed convergence analysis of the GIST algorithm. The efficiency of the proposed algorithm is demonstrated by extensive experiments on large-scale data sets.


Multi-Stage Multi-Task Feature Learning

Neural Information Processing Systems

Multi-task sparse feature learning aims to improve the generalization performance by exploiting the shared features among tasks. It has been successfully applied to many applications including computer vision and biomedical informatics. Most of the existing multi-task sparse feature learning algorithms are formulated as a convex sparse regularization problem, which is usually suboptimal, due to its looseness for approximating an $\ell_0$-type regularizer. In this paper, we propose a non-convex formulation for multi-task sparse feature learning based on a novel regularizer. To solve the non-convex optimization problem, we propose a Multi-Stage Multi-Task Feature Learning (MSMTFL) algorithm. Moreover, we present a detailed theoretical analysis showing that MSMTFL achieves a better parameter estimation error bound than the convex formulation. Empirical studies on both synthetic and real-world data sets demonstrate the effectiveness of MSMTFL in comparison with the state of the art multi-task sparse feature learning algorithms.


Multi-Stage Multi-Task Feature Learning

arXiv.org Machine Learning

Multi-task sparse feature learning aims to improve the generalization performance by exploiting the shared features among tasks. It has been successfully applied to many applications including computer vision and biomedical informatics. Most of the existing multi-task sparse feature learning algorithms are formulated as a convex sparse regularization problem, which is usually suboptimal, due to its looseness for approximating an $\ell_0$-type regularizer. In this paper, we propose a non-convex formulation for multi-task sparse feature learning based on a novel non-convex regularizer. To solve the non-convex optimization problem, we propose a Multi-Stage Multi-Task Feature Learning (MSMTFL) algorithm; we also provide intuitive interpretations, detailed convergence and reproducibility analysis for the proposed algorithm. Moreover, we present a detailed theoretical analysis showing that MSMTFL achieves a better parameter estimation error bound than the convex formulation. Empirical studies on both synthetic and real-world data sets demonstrate the effectiveness of MSMTFL in comparison with the state of the art multi-task sparse feature learning algorithms.


Efficient Multi-Stage Conjugate Gradient for Trust Region Step

AAAI Conferences

The trust region step problem, by solving a sphere constrained quadratic programming, plays a critical role in the trust region Newton method. In this paper, we propose an efficient Multi-Stage Conjugate Gradient (MSCG) algorithm to compute the trust region step in a multi-stage manner. Specifically, when the iterative solution is in the interior of the sphere, we perform the conjugate gradient procedure. Otherwise, we perform a gradient descent procedure which points to the inner of the sphere and can make the next iterative solution be a interior point. Subsequently, we proceed with the conjugate gradient procedure again. We repeat the above procedures until convergence. We also present a theoretical analysis which shows that the MSCG algorithm converges. Moreover, the proposed MSCG algorithm can generate a solution in any prescribed precision controlled by a tolerance parameter which is the only parameter we need. Experimental results on large-scale text data sets demonstrate our proposed MSCG algorithm has a faster convergence speed compared with the state-of-the-art algorithms.