Goto

Collaborating Authors

 Gong, Boqing


Neptune: The Long Orbit to Benchmarking Long Video Understanding

arXiv.org Artificial Intelligence

This paper describes a semi-automatic pipeline to generate challenging question-answer-decoy sets for understanding long videos. Many existing video datasets and models are focused on short clips (10s-30s). While some long video datasets do exist, they can often be solved by powerful image models applied per frame (and often to very few frames) in a video, and are usually manually annotated at high cost. In order to mitigate both these problems, we propose a scalable dataset creation pipeline which leverages large models (VLMs and LLMs), to automatically generate dense, time-aligned video captions, as well as tough question answer decoy sets for video segments (up to 15 minutes in length). Our dataset Neptune covers a broad range of long video reasoning abilities and consists of a subset that emphasizes multimodal reasoning. Since existing metrics for open-ended question answering are either rule-based or may rely on proprietary models, we provide a new open source model-based metric GEM to score open-ended responses on Neptune. Benchmark evaluations reveal that most current open-source long video models perform poorly on Neptune, particularly on questions testing temporal ordering, counting and state changes. Through Neptune, we aim to spur the development of more advanced models capable of understanding long videos. The dataset is available at https://github.com/google-deepmind/neptune


OmnixR: Evaluating Omni-modality Language Models on Reasoning across Modalities

arXiv.org Artificial Intelligence

We introduce OmnixR, an evaluation suite designed to benchmark SoTA Omni-modality Language Models, such as GPT-4o and Gemini. Evaluating OLMs, which integrate multiple modalities such as text, vision, and audio, presents unique challenges. Particularly, the user message might often consist of multiple modalities, such that OLMs have to establish holistic understanding and reasoning across modalities to accomplish the task. Existing benchmarks are limited to single modality or dual-modality tasks, overlooking comprehensive multi-modal assessments of model reasoning. To address this, OmnixR offers two evaluation variants: (1)synthetic subset: a synthetic dataset generated automatically by translating text into multiple modalities--audio, images, video, and hybrids (Omnify). (2)realistic subset: a real-world dataset, manually curated and annotated by experts, for evaluating cross-modal reasoning in natural settings. OmnixR presents a unique evaluation towards assessing OLMs over a diverse mix of modalities, such as a question that involves video, audio, and text, providing a rigorous cross-modal reasoning testbed unlike any existing benchmarks. Our experiments find that all state-of-the-art OLMs struggle with OmnixR questions that require integrating information from multiple modalities to answer. Further analysis highlights differences in reasoning behavior, underscoring the challenges of omni-modal AI alignment.


$\epsilon$-VAE: Denoising as Visual Decoding

arXiv.org Artificial Intelligence

In generative modeling, tokenization simplifies complex data into compact, structured representations, creating a more efficient, learnable space. For highdimensional visual data, it reduces redundancy and emphasizes key features for high-quality generation. Current visual tokenization methods rely on a traditional autoencoder framework, where the encoder compresses data into latent representations, and the decoder reconstructs the original input. In this work, we offer a new perspective by proposing denoising as decoding, shifting from single-step reconstruction to iterative refinement. Specifically, we replace the decoder with a diffusion process that iteratively refines noise to recover the original image, guided by the latents provided by the encoder. We evaluate our approach by assessing both reconstruction (rFID) and generation quality (FID), comparing it to state-of-theart autoencoding approach. We hope this work offers new insights into integrating iterative generation and autoencoding for improved compression and generation. Generative modeling aims to capture the underlying distribution of training data, enabling realistic sample generation during inference. A key preprocessing step is tokenization, which converts raw data into discrete tokens or continuous latent representations. These compact representations allow models to efficiently learn complex patterns, enhancing the quality of generated outputs.


SOAR: Self-supervision Optimized UAV Action Recognition with Efficient Object-Aware Pretraining

arXiv.org Artificial Intelligence

We introduce SOAR, a novel Self-supervised pretraining algorithm for aerial footage captured by Unmanned Aerial Vehicles (UAVs). We incorporate human object knowledge throughout the pretraining process to enhance UAV video pretraining efficiency and downstream action recognition performance. This is in contrast to prior works that primarily incorporate object information during the fine-tuning stage. Specifically, we first propose a novel object-aware masking strategy designed to retain the visibility of certain patches related to objects throughout the pretraining phase. Second, we introduce an object-aware loss function that utilizes object information to adjust the reconstruction loss, preventing bias towards less informative background patches. In practice, SOAR with a vanilla ViT backbone, outperforms best UAV action recognition models, recording a 9.7% and 21.4% boost in top-1 accuracy on the NEC-Drone and UAV-Human datasets, while delivering an inference speed of 18.7ms per video, making it 2x to 5x faster. Additionally, SOAR obtains comparable accuracy to prior self-supervised learning (SSL) methods while requiring 87.5% less pretraining time and 25% less memory usage


On Discrete Prompt Optimization for Diffusion Models

arXiv.org Machine Learning

This paper introduces the first gradient-based framework for prompt optimization in text-to-image diffusion models. We formulate prompt engineering as a discrete optimization problem over the language space. Two major challenges arise in efficiently finding a solution to this problem: (1) Enormous Domain Space: Setting the domain to the entire language space poses significant difficulty to the optimization process. (2) Text Gradient: Efficiently computing the text gradient is challenging, as it requires backpropagating through the inference steps of the diffusion model and a non-differentiable embedding lookup table. Beyond the problem formulation, our main technical contributions lie in solving the above challenges. First, we design a family of dynamically generated compact subspaces comprised of only the most relevant words to user input, substantially restricting the domain space. Second, we introduce "Shortcut Text Gradient" -- an effective replacement for the text gradient that can be obtained with constant memory and runtime. Empirical evaluation on prompts collected from diverse sources (DiffusionDB, ChatGPT, COCO) suggests that our method can discover prompts that substantially improve (prompt enhancement) or destroy (adversarial attack) the faithfulness of images generated by the text-to-image diffusion model.


VideoPrism: A Foundational Visual Encoder for Video Understanding

arXiv.org Artificial Intelligence

We introduce VideoPrism, a general-purpose video encoder that tackles diverse video understanding tasks with a single frozen model. We pretrain VideoPrism on a heterogeneous corpus containing 36M high-quality video-caption pairs and 582M video clips with noisy parallel text (e.g., ASR transcripts). The pretraining approach improves upon masked autoencoding by global-local distillation of semantic video embeddings and a token shuffling scheme, enabling VideoPrism to focus primarily on the video modality while leveraging the invaluable text associated with videos. We extensively test VideoPrism on four broad groups of video understanding tasks, from web video question answering to CV for science, achieving state-of-the-art performance on 31 out of 33 video understanding benchmarks.


The Crystal Ball Hypothesis in diffusion models: Anticipating object positions from initial noise

arXiv.org Artificial Intelligence

Diffusion models have achieved remarkable success in text-to-image generation tasks; however, the role of initial noise has been rarely explored. In this study, we identify specific regions within the initial noise image, termed trigger patches, that play a key role for object generation in the resulting images. Notably, these patches are ``universal'' and can be generalized across various positions, seeds, and prompts. To be specific, extracting these patches from one noise and injecting them into another noise leads to object generation in targeted areas. We identify these patches by analyzing the dispersion of object bounding boxes across generated images, leading to the development of a posterior analysis technique. Furthermore, we create a dataset consisting of Gaussian noises labeled with bounding boxes corresponding to the objects appearing in the generated images and train a detector that identifies these patches from the initial noise. To explain the formation of these patches, we reveal that they are outliers in Gaussian noise, and follow distinct distributions through two-sample tests. Finally, we find the misalignment between prompts and the trigger patch patterns can result in unsuccessful image generations. The study proposes a reject-sampling strategy to obtain optimal noise, aiming to improve prompt adherence and positional diversity in image generation.


Automatic Jailbreaking of the Text-to-Image Generative AI Systems

arXiv.org Artificial Intelligence

Recent AI systems have shown extremely powerful performance, even surpassing human performance, on various tasks such as information retrieval, language generation, and image generation based on large language models (LLMs). At the same time, there are diverse safety risks that can cause the generation of malicious contents by circumventing the alignment in LLMs, which are often referred to as jailbreaking. However, most of the previous works only focused on the text-based jailbreaking in LLMs, and the jailbreaking of the text-to-image (T2I) generation system has been relatively overlooked. In this paper, we first evaluate the safety of the commercial T2I generation systems, such as ChatGPT, Copilot, and Gemini, on copyright infringement with naive prompts. From this empirical study, we find that Copilot and Gemini block only 12% and 17% of the attacks with naive prompts, respectively, while ChatGPT blocks 84% of them. Then, we further propose a stronger automated jailbreaking pipeline for T2I generation systems, which produces prompts that bypass their safety guards. Our automated jailbreaking framework leverages an LLM optimizer to generate prompts to maximize degree of violation from the generated images without any weight updates or gradient computation. Surprisingly, our simple yet effective approach successfully jailbreaks the ChatGPT with 11.0% block rate, making it generate copyrighted contents in 76% of the time. Finally, we explore various defense strategies, such as post-generation filtering and machine unlearning techniques, but found that they were inadequate, which suggests the necessity of stronger defense mechanisms.


Instruct-Imagen: Image Generation with Multi-modal Instruction

arXiv.org Artificial Intelligence

This paper presents instruct-imagen, a model that tackles heterogeneous image generation tasks and generalizes across unseen tasks. We introduce *multi-modal instruction* for image generation, a task representation articulating a range of generation intents with precision. It uses natural language to amalgamate disparate modalities (e.g., text, edge, style, subject, etc.), such that abundant generation intents can be standardized in a uniform format. We then build instruct-imagen by fine-tuning a pre-trained text-to-image diffusion model with a two-stage framework. First, we adapt the model using the retrieval-augmented training, to enhance model's capabilities to ground its generation on external multimodal context. Subsequently, we fine-tune the adapted model on diverse image generation tasks that requires vision-language understanding (e.g., subject-driven generation, etc.), each paired with a multi-modal instruction encapsulating the task's essence. Human evaluation on various image generation datasets reveals that instruct-imagen matches or surpasses prior task-specific models in-domain and demonstrates promising generalization to unseen and more complex tasks.


Towards A Unified Neural Architecture for Visual Recognition and Reasoning

arXiv.org Artificial Intelligence

Recognition and reasoning are two pillars of visual understanding. However, these tasks have an imbalance in focus; whereas recent advances in neural networks have shown strong empirical performance in visual recognition, there has been comparably much less success in solving visual reasoning. Intuitively, unifying these two tasks under a singular framework is desirable, as they are mutually dependent and beneficial. Motivated by the recent success of multi-task transformers for visual recognition and language understanding, we propose a unified neural architecture for visual recognition and reasoning with a generic interface (e.g., tokens) for both. Our framework enables the principled investigation of how different visual recognition tasks, datasets, and inductive biases can help enable spatiotemporal reasoning capabilities. Noticeably, we find that object detection, which requires spatial localization of individual objects, is the most beneficial recognition task for reasoning. We further demonstrate via probing that implicit object-centric representations emerge automatically inside our framework. Intriguingly, we discover that certain architectural choices such as the backbone model of the visual encoder have a significant impact on visual reasoning, but little on object detection. Given the results of our experiments, we believe that visual reasoning should be considered as a first-class citizen alongside visual recognition, as they are strongly correlated but benefit from potentially different design choices.