Goncalves, Luis
Non-autoregressive Sequence-to-Sequence Vision-Language Models
Shi, Kunyu, Dong, Qi, Goncalves, Luis, Tu, Zhuowen, Soatto, Stefano
Sequence-to-sequence vision-language models are showing promise, but their applicability is limited by their inference latency due to their autoregressive way of generating predictions. We propose a parallel decoding sequence-to-sequence vision-language model, trained with a Query-CTC loss, that marginalizes over multiple inference paths in the decoder. This allows us to model the joint distribution of tokens, rather than restricting to conditional distribution as in an autoregressive model. The resulting model, NARVL, achieves performance on-par with its state-of-the-art autoregressive counterpart, but is faster at inference time, reducing from the linear complexity associated with the sequential generation of tokens to a paradigm of constant time joint inference.
Unsupervised Learning of Human Motion Models
Song, Yang, Goncalves, Luis, Perona, Pietro
This paper presents an unsupervised learning algorithm that can derive the probabilistic dependence structure of parts of an object (a moving human body in our examples) automatically from unlabeled data. The distinguished part of this work is that it is based on unlabeled data, i.e., the training features include both useful foreground parts and background clutter and the correspondence between the parts and detected features are unknown. We use decomposable triangulated graphs to depict the probabilistic independence of parts, but the unsupervised technique is not limited to this type of graph. In the new approach, labeling of the data (part assignments) is taken as hidden variables and the EM algorithm is applied. A greedy algorithm is developed to select parts and to search for the optimal structure based on the differential entropy of these variables. The success of our algorithm is demonstrated by applying it to generate models of human motion automatically from unlabeled real image sequences.
Unsupervised Learning of Human Motion Models
Song, Yang, Goncalves, Luis, Perona, Pietro
This paper presents an unsupervised learning algorithm that can derive the probabilistic dependence structure of parts of an object (a moving human bodyin our examples) automatically from unlabeled data. The distinguished partof this work is that it is based on unlabeled data, i.e., the training features include both useful foreground parts and background clutter and the correspondence between the parts and detected features are unknown. We use decomposable triangulated graphs to depict the probabilistic independence of parts, but the unsupervised technique is not limited to this type of graph. In the new approach, labeling of the data (part assignments) is taken as hidden variables and the EM algorithm isapplied. A greedy algorithm is developed to select parts and to search for the optimal structure based on the differential entropy of these variables. The success of our algorithm is demonstrated by applying it to generate models of human motion automatically from unlabeled real image sequences.