Goto

Collaborating Authors

 Goncalves, Andre R.


Hierarchical Sparse Bayesian Multitask Model with Scalable Inference for Microbiome Analysis

arXiv.org Artificial Intelligence

This paper proposes a hierarchical Bayesian multitask learning model that is applicable to the general multi-task binary classification learning problem where the model assumes a shared sparsity structure across different tasks. We derive a computationally efficient inference algorithm based on variational inference to approximate the posterior distribution. We demonstrate the potential of the new approach on various synthetic datasets and for predicting human health status based on microbiome profile. Our analysis incorporates data pooled from multiple microbiome studies, along with a comprehensive comparison with other benchmark methods. Results in synthetic datasets show that the proposed approach has superior support recovery property when the underlying regression coefficients share a common sparsity structure across different tasks. Our experiments on microbiome classification demonstrate the utility of the method in extracting informative taxa while providing well-calibrated predictions with uncertainty quantification and achieving competitive performance in terms of prediction metrics. Notably, despite the heterogeneity of the pooled datasets (e.g., different experimental objectives, laboratory setups, sequencing equipment, patient demographics), our method delivers robust results.


Spatial Projection of Multiple Climate Variables Using Hierarchical Multitask Learning

AAAI Conferences

Future projection of climate is typically obtained by combining outputs from multiple Earth System Models (ESMs) for several climate variables such as temperature and precipitation. While IPCC has traditionally used a simple model output average, recent work has illustrated potential advantages of using a multitask learning (MTL) framework for projections of individual climate variables. In this paper we introduce a framework for hierarchical multitask learning (HMTL) with two levels of tasks such that each super-task, i.e., task at the top level, is itself a multitask learning problem over sub-tasks. For climate projections, each super-task focuses on projections of specific climate variables spatially using an MTL formulation. For the proposed HMTL approach, a group lasso regularization is added to couple parameters across the super-tasks, which in the climate context helps exploit relationships among the behavior of different climate variables at a given spatial location. We show that some recent works on MTL based on learning task dependency structures can be viewed as special cases of HMTL. Experiments on synthetic and real climate data show that HMTL produces better results than decoupled MTL methods applied separately on the super-tasks and HMTL significantly outperforms baselines for climate projection.


Multi-task Sparse Structure Learning

arXiv.org Machine Learning

Multi-task learning (MTL) aims to improve generalization performance by learning multiple related tasks simultaneously. While sometimes the underlying task relationship structure is known, often the structure needs to be estimated from data at hand. In this paper, we present a novel family of models for MTL, applicable to regression and classification problems, capable of learning the structure of task relationships. In particular, we consider a joint estimation problem of the task relationship structure and the individual task parameters, which is solved using alternating minimization. The task relationship structure learning component builds on recent advances in structure learning of Gaussian graphical models based on sparse estimators of the precision (inverse covariance) matrix. We illustrate the effectiveness of the proposed model on a variety of synthetic and benchmark datasets for regression and classification. We also consider the problem of combining climate model outputs for better projections of future climate, with focus on temperature in South America, and show that the proposed model outperforms several existing methods for the problem.