Gombolay, Matthew
The Effect of Robot Skill Level and Communication in Rapid, Proximate Human-Robot Collaboration
Lee, Kin Man, Krishna, Arjun, Zaidi, Zulfiqar, Paleja, Rohan, Chen, Letian, Hedlund-Botti, Erin, Schrum, Mariah, Gombolay, Matthew
As high-speed, agile robots become more commonplace, these robots will have the potential to better aid and collaborate with humans. However, due to the increased agility and functionality of these robots, close collaboration with humans can create safety concerns that alter team dynamics and degrade task performance. In this work, we aim to enable the deployment of safe and trustworthy agile robots that operate in proximity with humans. We do so by 1) Proposing a novel human-robot doubles table tennis scenario to serve as a testbed for studying agile, proximate human-robot collaboration and 2) Conducting a user-study to understand how attributes of the robot (e.g., robot competency or capacity to communicate) impact team dynamics, perceived safety, and perceived trust, and how these latent factors affect human-robot collaboration (HRC) performance. We find that robot competency significantly increases perceived trust ($p<.001$), extending skill-to-trust assessments in prior studies to agile, proximate HRC. Furthermore, interestingly, we find that when the robot vocalizes its intention to perform a task, it results in a significant decrease in team performance ($p=.037$) and perceived safety of the system ($p=.009$).
Safe Inverse Reinforcement Learning via Control Barrier Function
Yang, Yue, Chen, Letian, Gombolay, Matthew
Learning from Demonstration (LfD) is a powerful method for enabling robots to perform novel tasks as it is often more tractable for a non-roboticist end-user to demonstrate the desired skill and for the robot to efficiently learn from the associated data than for a human to engineer a reward function for the robot to learn the skill via reinforcement learning (RL). Safety issues arise in modern LfD techniques, e.g., Inverse Reinforcement Learning (IRL), just as they do for RL; yet, safe learning in LfD has received little attention. In the context of agile robots, safety is especially vital due to the possibility of robot-environment collision, robot-human collision, and damage to the robot. In this paper, we propose a safe IRL framework, CBFIRL, that leverages the Control Barrier Function (CBF) to enhance the safety of the IRL policy. The core idea of CBFIRL is to combine a loss function inspired by CBF requirements with the objective in an IRL method, both of which are jointly optimized via gradient descent. In the experiments, we show our framework performs safer compared to IRL methods without CBF, that is $\sim15\%$ and $\sim20\%$ improvement for two levels of difficulty of a 2D racecar domain and $\sim 50\%$ improvement for a 3D drone domain.
Athletic Mobile Manipulator System for Robotic Wheelchair Tennis
Zaidi, Zulfiqar, Martin, Daniel, Belles, Nathaniel, Zakharov, Viacheslav, Krishna, Arjun, Lee, Kin Man, Wagstaff, Peter, Naik, Sumedh, Sklar, Matthew, Choi, Sugju, Kakehi, Yoshiki, Patil, Ruturaj, Mallemadugula, Divya, Pesce, Florian, Wilson, Peter, Hom, Wendell, Diamond, Matan, Zhao, Bryan, Moorman, Nina, Paleja, Rohan, Chen, Letian, Seraj, Esmaeil, Gombolay, Matthew
Athletics are a quintessential and universal expression of humanity. From French monks who in the 12th century invented jeu de paume, the precursor to modern lawn tennis, back to the K'iche' people who played the Maya Ballgame as a form of religious expression over three thousand years ago, humans have sought to train their minds and bodies to excel in sporting contests. Advances in robotics are opening up the possibility of robots in sports. Yet, key challenges remain, as most prior works in robotics for sports are limited to pristine sensing environments, do not require significant force generation, or are on miniaturized scales unsuited for joint human-robot play. In this paper, we propose the first open-source, autonomous robot for playing regulation wheelchair tennis. We demonstrate the performance of our full-stack system in executing ground strokes and evaluate each of the system's hardware and software components. The goal of this paper is to (1) inspire more research in human-scale robot athletics and (2) establish the first baseline for a reproducible wheelchair tennis robot for regulation singles play. Our paper contributes to the science of systems design and poses a set of key challenges for the robotics community to address in striving towards robots that can match human capabilities in sports.
Learning Coordination Policies over Heterogeneous Graphs for Human-Robot Teams via Recurrent Neural Schedule Propagation
Altundas, Batuhan, Wang, Zheyuan, Bishop, Joshua, Gombolay, Matthew
As human-robot collaboration increases in the workforce, it becomes essential for human-robot teams to coordinate efficiently and intuitively. Traditional approaches for human-robot scheduling either utilize exact methods that are intractable for large-scale problems and struggle to account for stochastic, time varying human task performance, or application-specific heuristics that require expert domain knowledge to develop. We propose a deep learning-based framework, called HybridNet, combining a heterogeneous graph-based encoder with a recurrent schedule propagator for scheduling stochastic human-robot teams under upper- and lower-bound temporal constraints. The HybridNet's encoder leverages Heterogeneous Graph Attention Networks to model the initial environment and team dynamics while accounting for the constraints. By formulating task scheduling as a sequential decision-making process, the HybridNet's recurrent neural schedule propagator leverages Long Short-Term Memory (LSTM) models to propagate forward consequences of actions to carry out fast schedule generation, removing the need to interact with the environment between every task-agent pair selection. The resulting scheduling policy network provides a computationally lightweight yet highly expressive model that is end-to-end trainable via Reinforcement Learning algorithms. We develop a virtual task scheduling environment for mixed human-robot teams in a multi-round setting, capable of modeling the stochastic learning behaviors of human workers. Experimental results showed that HybridNet outperformed other human-robot scheduling solutions across problem sizes for both deterministic and stochastic human performance, with faster runtime compared to pure-GNN-based schedulers.
Towards the design of user-centric strategy recommendation systems for collaborative Human-AI tasks
Dodeja, Lakshita, Tambwekar, Pradyumna, Hedlund-Botti, Erin, Gombolay, Matthew
Artificial Intelligence is being employed by humans to collaboratively solve complicated tasks for search and rescue, manufacturing, etc. Efficient teamwork can be achieved by understanding user preferences and recommending different strategies for solving the particular task to humans. Prior work has focused on personalization of recommendation systems for relatively well-understood tasks in the context of e-commerce or social networks. In this paper, we seek to understand the important factors to consider while designing user-centric strategy recommendation systems for decision-making. We conducted a human-subjects experiment (n=60) for measuring the preferences of users with different personality types towards different strategy recommendation systems. We conducted our experiment across four types of strategy recommendation modalities that have been established in prior work: (1) Single strategy recommendation, (2) Multiple similar recommendations, (3) Multiple diverse recommendations, (4) All possible strategies recommendations. While these strategy recommendation schemes have been explored independently in prior work, our study is novel in that we employ all of them simultaneously and in the context of strategy recommendations, to provide us an in-depth overview of the perception of different strategy recommendation systems. We found that certain personality traits, such as conscientiousness, notably impact the preference towards a particular type of system (p < 0.01). Finally, we report an interesting relationship between usability, alignment and perceived intelligence wherein greater perceived alignment of recommendations with one's own preferences leads to higher perceived intelligence (p < 0.01) and higher usability (p < 0.01).
Towards Reconciling Usability and Usefulness of Explainable AI Methodologies
Tambwekar, Pradyumna, Gombolay, Matthew
Interactive Artificial Intelligence (AI) agents are becoming increasingly prevalent in society. However, application of such systems without understanding them can be problematic. Black-box AI systems can lead to liability and accountability issues when they produce an incorrect decision. Explainable AI (XAI) seeks to bridge the knowledge gap, between developers and end-users, by offering insights into how an AI algorithm functions. Many modern algorithms focus on making the AI model "transparent", i.e. unveil the inherent functionality of the agent in a simpler format. However, these approaches do not cater to end-users of these systems, as users may not possess the requisite knowledge to understand these explanations in a reasonable amount of time. Therefore, to be able to develop suitable XAI methods, we need to understand the factors which influence subjective perception and objective usability. In this paper, we present a novel user-study which studies four differing XAI modalities commonly employed in prior work for explaining AI behavior, i.e. Decision Trees, Text, Programs. We study these XAI modalities in the context of explaining the actions of a self-driving car on a highway, as driving is an easily understandable real-world task and self-driving cars is a keen area of interest within the AI community. Our findings highlight internal consistency issues wherein participants perceived language explanations to be significantly more usable, however participants were better able to objectively understand the decision making process of the car through a decision tree explanation. Our work also provides further evidence of importance of integrating user-specific and situational criteria into the design of XAI systems. Our findings show that factors such as computer science experience, and watching the car succeed or fail can impact the perception and usefulness of the explanation.
Utilizing Human Feedback for Primitive Optimization in Wheelchair Tennis
Krishna, Arjun, Zaidi, Zulfiqar, Chen, Letian, Paleja, Rohan, Seraj, Esmaeil, Gombolay, Matthew
Agile robotics presents a difficult challenge with robots moving at high speeds requiring precise and low-latency sensing and control. Creating agile motion that accomplishes the task at hand while being safe to execute is a key requirement for agile robots to gain human trust. This requires designing new approaches that are flexible and maintain knowledge over world constraints. In this paper, we consider the problem of building a flexible and adaptive controller for a challenging agile mobile manipulation task of hitting ground strokes on a wheelchair tennis robot. We propose and evaluate an extension to work done on learning striking behaviors using a probabilistic movement primitive (ProMP) framework by (1) demonstrating the safe execution of learned primitives on an agile mobile manipulator setup, and (2) proposing an online primitive refinement procedure that utilizes evaluative feedback from humans on the executed trajectories.
The Utility of Explainable AI in Ad Hoc Human-Machine Teaming
Paleja, Rohan, Ghuy, Muyleng, Arachchige, Nadun Ranawaka, Jensen, Reed, Gombolay, Matthew
Recent advances in machine learning have led to growing interest in Explainable AI (xAI) to enable humans to gain insight into the decision-making of machine learning models. Despite this recent interest, the utility of xAI techniques has not yet been characterized in human-machine teaming. Importantly, xAI offers the promise of enhancing team situational awareness (SA) and shared mental model development, which are the key characteristics of effective human-machine teams. Rapidly developing such mental models is especially critical in ad hoc human-machine teaming, where agents do not have a priori knowledge of others' decision-making strategies. In this paper, we present two novel human-subject experiments quantifying the benefits of deploying xAI techniques within a human-machine teaming scenario. First, we show that xAI techniques can support SA ($p<0.05)$. Second, we examine how different SA levels induced via a collaborative AI policy abstraction affect ad hoc human-machine teaming performance. Importantly, we find that the benefits of xAI are not universal, as there is a strong dependence on the composition of the human-machine team. Novices benefit from xAI providing increased SA ($p<0.05$) but are susceptible to cognitive overhead ($p<0.05$). On the other hand, expert performance degrades with the addition of xAI-based support ($p<0.05$), indicating that the cost of paying attention to the xAI outweighs the benefits obtained from being provided additional information to enhance SA. Our results demonstrate that researchers must deliberately design and deploy the right xAI techniques in the right scenario by carefully considering human-machine team composition and how the xAI method augments SA.
Robots Enact Malignant Stereotypes
Hundt, Andrew, Agnew, William, Zeng, Vicky, Kacianka, Severin, Gombolay, Matthew
Stereotypes, bias, and discrimination have been extensively documented in Machine Learning (ML) methods such as Computer Vision (CV) [18, 80], Natural Language Processing (NLP) [6], or both, in the case of large image and caption models such as OpenAI CLIP [14]. In this paper, we evaluate how ML bias manifests in robots that physically and autonomously act within the world. We audit one of several recently published CLIP-powered robotic manipulation methods, presenting it with objects that have pictures of human faces on the surface which vary across race and gender, alongside task descriptions that contain terms associated with common stereotypes. Our experiments definitively show robots acting out toxic stereotypes with respect to gender, race, and scientifically-discredited physiognomy, at scale. Furthermore, the audited methods are less likely to recognize Women and People of Color. Our interdisciplinary sociotechnical analysis synthesizes across fields and applications such as Science Technology and Society (STS), Critical Studies, History, Safety, Robotics, and AI. We find that robots powered by large datasets and Dissolution Models (sometimes called "foundation models", e.g. CLIP) that contain humans risk physically amplifying malignant stereotypes in general; and that merely correcting disparities will be insufficient for the complexity and scale of the problem. Instead, we recommend that robot learning methods that physically manifest stereotypes or other harmful outcomes be paused, reworked, or even wound down when appropriate, until outcomes can be proven safe, effective, and just. Finally, we discuss comprehensive policy changes and the potential of new interdisciplinary research on topics like Identity Safety Assessment Frameworks and Design Justice to better understand and address these harms.
Iterated Reasoning with Mutual Information in Cooperative and Byzantine Decentralized Teaming
Konan, Sachin, Seraj, Esmaeil, Gombolay, Matthew
Information sharing is key in building team cognition and enables coordination and cooperation. High-performing human teams also benefit from acting strategically with hierarchical levels of iterated communication and rationalizability, meaning a human agent can reason about the actions of their teammates in their decision-making. Yet, the majority of prior work in Multi-Agent Reinforcement Learning (MARL) does not support iterated rationalizability and only encourage inter-agent communication, resulting in a suboptimal equilibrium cooperation strategy. In this work, we show that reformulating an agent's policy to be conditional on the policies of its neighboring teammates inherently maximizes Mutual Information (MI) lower-bound when optimizing under Policy Gradient (PG). Building on the idea of decision-making under bounded rationality and cognitive hierarchy theory, we show that our modified PG approach not only maximizes local agent rewards but also implicitly reasons about MI between agents without the need for any explicit ad-hoc regularization terms. Our approach, InfoPG, outperforms baselines in learning emergent collaborative behaviors and sets the state-of-the-art in decentralized cooperative MARL tasks. Our experiments validate the utility of InfoPG by achieving higher sample efficiency and significantly larger cumulative reward in several complex cooperative multi-agent domains.