Goldental, Amir
Power-law Scaling to Assist with Key Challenges in Artificial Intelligence
Meir, Yuval, Sardi, Shira, Hodassman, Shiri, Kisos, Karin, Ben-Noam, Itamar, Goldental, Amir, Kanter, Ido
Power-law scaling, a central concept in critical phenomena, is found to be useful in deep learning, where optimized test errors on handwritten digit examples converge as a power-law to zero with database size. For rapid decision making with one training epoch, each example is presented only once to the trained network, the power-law exponent increased with the number of hidden layers. For the largest dataset, the obtained test error was estimated to be in the proximity of state-of-the-art algorithms for large epoch numbers. Power-law scaling assists with key challenges found in current artificial intelligence applications and facilitates an a priori dataset size estimation to achieve a desired test accuracy. It establishes a benchmark for measuring training complexity and a quantitative hierarchy of machine learning tasks and algorithms.
Brain inspired neuronal silencing mechanism to enable reliable sequence identification
Hodassman, Shiri, Meir, Yuval, Kisos, Karin, Ben-Noam, Itamar, Tugendhaft, Yael, Goldental, Amir, Vardi, Roni, Kanter, Ido
Real-time sequence identification is a core use-case of artificial neural networks (ANNs), ranging from recognizing temporal events to identifying verification codes. Existing methods apply recurrent neural networks, which suffer from training difficulties; however, performing this function without feedback loops remains a challenge. Here, we present an experimental neuronal long-term plasticity mechanism for high-precision feedforward sequence identification networks (ID-nets) without feedback loops, wherein input objects have a given order and timing. This mechanism temporarily silences neurons following their recent spiking activity. Therefore, transitory objects act on different dynamically created feedforward sub-networks. ID-nets are demonstrated to reliably identify 10 handwritten digit sequences, and are generalized to deep convolutional ANNs with continuous activation nodes trained on image sequences. Counterintuitively, their classification performance, even with a limited number of training examples, is high for sequences but low for individual objects. ID-nets are also implemented for writer-dependent recognition, and suggested as a cryptographic tool for encrypted authentication. The presented mechanism opens new horizons for advanced ANN algorithms.