Golan, Tal
Testing the limits of natural language models for predicting human language judgments
Golan, Tal, Siegelman, Matthew, Kriegeskorte, Nikolaus, Baldassano, Christopher
Neural network language models can serve as computational hypotheses about how humans process language. We compared the model-human consistency of diverse language models using a novel experimental approach: controversial sentence pairs. For each controversial sentence pair, two language models disagree about which sentence is more likely to occur in natural text. Considering nine language models (including n-gram, recurrent neural networks, and transformer models), we created hundreds of such controversial sentence pairs by either selecting sentences from a corpus or synthetically optimizing sentence pairs to be highly controversial. Human subjects then provided judgments indicating for each pair which of the two sentences is more likely. Controversial sentence pairs proved highly effective at revealing model failures and identifying models that aligned most closely with human judgments. The most human-consistent model tested was GPT-2, although experiments also revealed significant shortcomings of its alignment with human perception.
Distinguishing representational geometries with controversial stimuli: Bayesian experimental design and its application to face dissimilarity judgments
Golan, Tal, Guo, Wenxuan, Schütt, Heiko H., Kriegeskorte, Nikolaus
Comparing representations of complex stimuli in neural network layers to human brain representations or behavioral judgments can guide model development. However, even qualitatively distinct neural network models often predict similar representational geometries of typical stimulus sets. We propose a Bayesian experimental design approach to synthesizing stimulus sets for adjudicating among representational models efficiently. We apply our method to discriminate among candidate neural network models of behavioral face dissimilarity judgments. Our results indicate that a neural network trained to invert a 3D-face-model graphics renderer is more human-aligned than the same architecture trained on identification, classification, or autoencoding. Our proposed stimulus synthesis objective is generally applicable to designing experiments to be analyzed by representational similarity analysis for model comparison.
From voxels to pixels and back: Self-supervision in natural-image reconstruction from fMRI
Beliy, Roman, Gaziv, Guy, Hoogi, Assaf, Strappini, Francesca, Golan, Tal, Irani, Michal
Reconstructing observed images from fMRI brain recordings is challenging. Unfortunately, acquiring sufficient "labeled" pairs of {Image, fMRI} (i.e., images with their corresponding fMRI responses) to span the huge space of natural images is prohibitive for many reasons. We present a novel approach which, in addition to the scarce labeled data (training pairs), allows to train fMRI-to-image reconstruction networks also on "unlabeled" data (i.e., images without fMRI recording, and fMRI recording without images). The proposed model utilizes both an Encoder network (image-to-fMRI) and a Decoder network (fMRI-to-image). Concatenating these two networks back-to-back (Encoder-Decoder & Decoder-Encoder) allows augmenting the training with both types of unlabeled data. Importantly, it allows training on the unlabeled test-fMRI data. This self-supervision adapts the reconstruction network to the new input test-data, despite its deviation from the statistics of the scarce training data.