Goto

Collaborating Authors

 Golan, Itay


Task Agnostic Continual Learning Using Online Variational Bayes with Fixed-Point Updates

arXiv.org Machine Learning

Background: Catastrophic forgetting is the notorious vulnerability of neural networks to the changes in the data distribution during learning. This phenomenon has long been considered a major obstacle for using learning agents in realistic continual learning settings. A large body of continual learning research assumes that task boundaries are known during training. However, only a few works consider scenarios in which task boundaries are unknown or not well defined -- task agnostic scenarios. The optimal Bayesian solution for this requires an intractable online Bayes update to the weights posterior. Contributions: We aim to approximate the online Bayes update as accurately as possible. To do so, we derive novel fixed-point equations for the online variational Bayes optimization problem, for multivariate Gaussian parametric distributions. By iterating the posterior through these fixed-point equations, we obtain an algorithm (FOO-VB) for continual learning which can handle non-stationary data distribution using a fixed architecture and without using external memory (i.e. without access to previous data). We demonstrate that our method (FOO-VB) outperforms existing methods in task agnostic scenarios. FOO-VB Pytorch implementation will be available online.


Norm matters: efficient and accurate normalization schemes in deep networks

Neural Information Processing Systems

Over the past few years, Batch-Normalization has been commonly used in deep networks, allowing faster training and high performance for a wide variety of applications. However, the reasons behind its merits remained unanswered, with several shortcomings that hindered its use for certain tasks. In this work, we present a novel view on the purpose and function of normalization methods and weight-decay, as tools to decouple weights' norm from the underlying optimized objective. This property highlights the connection between practices such as normalization, weight decay and learning-rate adjustments. We suggest several alternatives to the widely used $L^2$ batch-norm, using normalization in $L^1$ and $L^\infty$ spaces that can substantially improve numerical stability in low-precision implementations as well as provide computational and memory benefits. We demonstrate that such methods enable the first batch-norm alternative to work for half-precision implementations. Finally, we suggest a modification to weight-normalization, which improves its performance on large-scale tasks.


Norm matters: efficient and accurate normalization schemes in deep networks

Neural Information Processing Systems

Over the past few years, Batch-Normalization has been commonly used in deep networks, allowing faster training and high performance for a wide variety of applications. However, the reasons behind its merits remained unanswered, with several shortcomings that hindered its use for certain tasks. In this work, we present a novel view on the purpose and function of normalization methods and weight-decay, as tools to decouple weights' norm from the underlying optimized objective. This property highlights the connection between practices such as normalization, weight decay and learning-rate adjustments. We suggest several alternatives to the widely used $L^2$ batch-norm, using normalization in $L^1$ and $L^\infty$ spaces that can substantially improve numerical stability in low-precision implementations as well as provide computational and memory benefits. We demonstrate that such methods enable the first batch-norm alternative to work for half-precision implementations. Finally, we suggest a modification to weight-normalization, which improves its performance on large-scale tasks.


Bayesian Gradient Descent: Online Variational Bayes Learning with Increased Robustness to Catastrophic Forgetting and Weight Pruning

arXiv.org Machine Learning

We suggest a novel approach for the estimation of the posterior distribution of the weights of a neural network, using an online version of the variational Bayes method. Having a confidence measure of the weights allows to combat several shortcomings of neural networks, such as their parameter redundancy, and their notorious vulnerability to the change of input distribution ("catastrophic forgetting"). Specifically, We show that this approach helps alleviate the catastrophic forgetting phenomenon - even without the knowledge of when the tasks are been switched. Furthermore, it improves the robustness of the network to weight pruning - even without re-training.


Norm matters: efficient and accurate normalization schemes in deep networks

arXiv.org Machine Learning

Over the past few years batch-normalization has been commonly used in deep networks, allowing faster training and high performance for a wide variety of applications. However, the reasons behind its merits remained unanswered, with several shortcomings that hindered its use for certain tasks. In this work we present a novel view on the purpose and function of normalization methods and weight-decay, as tools to decouple weights' norm from the underlying optimized objective. We also improve the use of weight-normalization and show the connection between practices such as normalization, weight decay and learning-rate adjustments. Finally, we suggest several alternatives to the widely used $L^2$ batch-norm, using normalization in $L^1$ and $L^\infty$ spaces that can substantially improve numerical stability in low-precision implementations as well as provide computational and memory benefits. We demonstrate that such methods enable the first batch-norm alternative to work for half-precision implementations.