Gokaslan, Aaron
Block Diffusion: Interpolating Between Autoregressive and Diffusion Language Models
Arriola, Marianne, Gokaslan, Aaron, Chiu, Justin T, Yang, Zhihan, Qi, Zhixuan, Han, Jiaqi, Sahoo, Subham Sekhar, Kuleshov, Volodymyr
Diffusion language models offer unique benefits over autoregressive models due to their potential for parallelized generation and controllability, yet they lag in likelihood modeling and are limited to fixed-length generation. In this work, we introduce a class of block diffusion language models that interpolate between discrete denoising diffusion and autoregressive models. Block diffusion overcomes key limitations of both approaches by supporting flexible-length generation and improving inference efficiency with KV caching and parallel token sampling. We propose a recipe for building effective block diffusion models that includes an efficient training algorithm, estimators of gradient variance, and data-driven noise schedules to minimize the variance. Block diffusion sets a new state-of-the-art performance among diffusion models on language modeling benchmarks and enables generation of arbitrary-length sequences. We provide the code, along with the model weights and blog post on the project page: https://m-arriola.com/bd3lms/
The GAN is dead; long live the GAN! A Modern GAN Baseline
Huang, Yiwen, Gokaslan, Aaron, Kuleshov, Volodymyr, Tompkin, James
There is a widely-spread claim that GANs are difficult to train, and GAN architectures in the literature are littered with empirical tricks. We provide evidence against this claim and build a modern GAN baseline in a more principled manner. First, we derive a well-behaved regularized relativistic GAN loss that addresses issues of mode dropping and non-convergence that were previously tackled via a bag of ad-hoc tricks. We analyze our loss mathematically and prove that it admits local convergence guarantees, unlike most existing relativistic losses. Second, this loss allows us to discard all ad-hoc tricks and replace outdated backbones used in common GANs with modern architectures. Using StyleGAN2 as an example, we present a roadmap of simplification and modernization that results in a new minimalist baseline--R3GAN ("Re-GAN"). Despite being simple, our approach surpasses StyleGAN2 on FFHQ, ImageNet, CIFAR, and Stacked MNIST datasets, and compares favorably against state-of-the-art GANs and diffusion models.
Simple and Effective Masked Diffusion Language Models
Sahoo, Subham Sekhar, Arriola, Marianne, Schiff, Yair, Gokaslan, Aaron, Marroquin, Edgar, Chiu, Justin T, Rush, Alexander, Kuleshov, Volodymyr
While diffusion models excel at generating high-quality images, prior work reports a significant performance gap between diffusion and autoregressive (AR) methods in language modeling. In this work, we show that simple masked discrete diffusion is more performant than previously thought. We apply an effective training recipe that improves the performance of masked diffusion models and derive a simplified, Rao-Blackwellized objective that results in additional improvements. Our objective has a simple form -- it is a mixture of classical masked language modeling losses -- and can be used to train encoder-only language models that admit efficient samplers, including ones that can generate arbitrary lengths of text semi-autoregressively like a traditional language model. On language modeling benchmarks, a range of masked diffusion models trained with modern engineering practices achieves a new state-of-the-art among diffusion models, and approaches AR perplexity. We release our code at: https://github.com/kuleshov-group/mdlm
Caduceus: Bi-Directional Equivariant Long-Range DNA Sequence Modeling
Schiff, Yair, Kao, Chia-Hsiang, Gokaslan, Aaron, Dao, Tri, Gu, Albert, Kuleshov, Volodymyr
Large-scale sequence modeling has sparked rapid advances that now extend into biology and genomics. However, modeling genomic sequences introduces challenges such as the need to model long-range token interactions, the effects of upstream and downstream regions of the genome, and the reverse complementarity (RC) of DNA. Here, we propose an architecture motivated by these challenges that builds off the long-range Mamba block, and extends it to a BiMamba component that supports bi-directionality, and to a MambaDNA block that additionally supports RC equivariance. We use MambaDNA as the basis of Caduceus, the first family of RC equivariant bi-directional long-range DNA language models, and we introduce pre-training and fine-tuning strategies that yield Caduceus DNA foundation models. Caduceus outperforms previous long-range models on downstream benchmarks; on a challenging long-range variant effect prediction task, Caduceus exceeds the performance of 10x larger models that do not leverage bi-directionality or equivariance.
On the Standardization of Behavioral Use Clauses and Their Adoption for Responsible Licensing of AI
McDuff, Daniel, Korjakow, Tim, Cambo, Scott, Benjamin, Jesse Josua, Lee, Jenny, Jernite, Yacine, Ferrandis, Carlos Muñoz, Gokaslan, Aaron, Tarkowski, Alek, Lindley, Joseph, Cooper, A. Feder, Contractor, Danish
Growing concerns over negligent or malicious uses of AI have increased the appetite for tools that help manage the risks of the technology. In 2018, licenses with behaviorial-use clauses (commonly referred to as Responsible AI Licenses) were proposed to give developers a framework for releasing AI assets while specifying their users to mitigate negative applications. As of the end of 2023, on the order of 40,000 software and model repositories have adopted responsible AI licenses licenses. Notable models licensed with behavioral use clauses include BLOOM (language) and LLaMA2 (language), Stable Diffusion (image), and GRID (robotics). This paper explores why and how these licenses have been adopted, and why and how they have been adapted to fit particular use cases. We use a mixed-methods methodology of qualitative interviews, clustering of license clauses, and quantitative analysis of license adoption. Based on this evidence we take the position that responsible AI licenses need standardization to avoid confusing users or diluting their impact. At the same time, customization of behavioral restrictions is also appropriate in some contexts (e.g., medical domains). We advocate for ``standardized customization'' that can meet users' needs and can be supported via tooling.
Diffusion Models With Learned Adaptive Noise
Sahoo, Subham Sekhar, Gokaslan, Aaron, De Sa, Chris, Kuleshov, Volodymyr
Diffusion models have gained traction as powerful algorithms for synthesizing high-quality images. Central to these algorithms is the diffusion process, which maps data to noise according to equations inspired by thermodynamics and can significantly impact performance. A widely held assumption is that the ELBO objective of a diffusion model is invariant to the noise process (Kingma et al.,2021). In this work, we dispel this assumption -- we propose multivariate learned adaptive noise (MuLAN), a learned diffusion process that applies Gaussian noise at different rates across an image. Our method consists of three components -- a multivariate noise schedule, instance-conditional diffusion, and auxiliary variables -- which ensure that the learning objective is no longer invariant to the choice of the noise schedule as in previous works. Our work is grounded in Bayesian inference and casts the learned diffusion process as an approximate variational posterior that yields a tighter lower bound on marginal likelihood. Empirically, MuLAN sets a new state-of-the-art in density estimation on CIFAR-10 and ImageNet compared to classical diffusion. Code is available at https://github.com/s-sahoo/MuLAN
BLOOM: A 176B-Parameter Open-Access Multilingual Language Model
Workshop, BigScience, :, null, Scao, Teven Le, Fan, Angela, Akiki, Christopher, Pavlick, Ellie, Ilić, Suzana, Hesslow, Daniel, Castagné, Roman, Luccioni, Alexandra Sasha, Yvon, François, Gallé, Matthias, Tow, Jonathan, Rush, Alexander M., Biderman, Stella, Webson, Albert, Ammanamanchi, Pawan Sasanka, Wang, Thomas, Sagot, Benoît, Muennighoff, Niklas, del Moral, Albert Villanova, Ruwase, Olatunji, Bawden, Rachel, Bekman, Stas, McMillan-Major, Angelina, Beltagy, Iz, Nguyen, Huu, Saulnier, Lucile, Tan, Samson, Suarez, Pedro Ortiz, Sanh, Victor, Laurençon, Hugo, Jernite, Yacine, Launay, Julien, Mitchell, Margaret, Raffel, Colin, Gokaslan, Aaron, Simhi, Adi, Soroa, Aitor, Aji, Alham Fikri, Alfassy, Amit, Rogers, Anna, Nitzav, Ariel Kreisberg, Xu, Canwen, Mou, Chenghao, Emezue, Chris, Klamm, Christopher, Leong, Colin, van Strien, Daniel, Adelani, David Ifeoluwa, Radev, Dragomir, Ponferrada, Eduardo González, Levkovizh, Efrat, Kim, Ethan, Natan, Eyal Bar, De Toni, Francesco, Dupont, Gérard, Kruszewski, Germán, Pistilli, Giada, Elsahar, Hady, Benyamina, Hamza, Tran, Hieu, Yu, Ian, Abdulmumin, Idris, Johnson, Isaac, Gonzalez-Dios, Itziar, de la Rosa, Javier, Chim, Jenny, Dodge, Jesse, Zhu, Jian, Chang, Jonathan, Frohberg, Jörg, Tobing, Joseph, Bhattacharjee, Joydeep, Almubarak, Khalid, Chen, Kimbo, Lo, Kyle, Von Werra, Leandro, Weber, Leon, Phan, Long, allal, Loubna Ben, Tanguy, Ludovic, Dey, Manan, Muñoz, Manuel Romero, Masoud, Maraim, Grandury, María, Šaško, Mario, Huang, Max, Coavoux, Maximin, Singh, Mayank, Jiang, Mike Tian-Jian, Vu, Minh Chien, Jauhar, Mohammad A., Ghaleb, Mustafa, Subramani, Nishant, Kassner, Nora, Khamis, Nurulaqilla, Nguyen, Olivier, Espejel, Omar, de Gibert, Ona, Villegas, Paulo, Henderson, Peter, Colombo, Pierre, Amuok, Priscilla, Lhoest, Quentin, Harliman, Rheza, Bommasani, Rishi, López, Roberto Luis, Ribeiro, Rui, Osei, Salomey, Pyysalo, Sampo, Nagel, Sebastian, Bose, Shamik, Muhammad, Shamsuddeen Hassan, Sharma, Shanya, Longpre, Shayne, Nikpoor, Somaieh, Silberberg, Stanislav, Pai, Suhas, Zink, Sydney, Torrent, Tiago Timponi, Schick, Timo, Thrush, Tristan, Danchev, Valentin, Nikoulina, Vassilina, Laippala, Veronika, Lepercq, Violette, Prabhu, Vrinda, Alyafeai, Zaid, Talat, Zeerak, Raja, Arun, Heinzerling, Benjamin, Si, Chenglei, Taşar, Davut Emre, Salesky, Elizabeth, Mielke, Sabrina J., Lee, Wilson Y., Sharma, Abheesht, Santilli, Andrea, Chaffin, Antoine, Stiegler, Arnaud, Datta, Debajyoti, Szczechla, Eliza, Chhablani, Gunjan, Wang, Han, Pandey, Harshit, Strobelt, Hendrik, Fries, Jason Alan, Rozen, Jos, Gao, Leo, Sutawika, Lintang, Bari, M Saiful, Al-shaibani, Maged S., Manica, Matteo, Nayak, Nihal, Teehan, Ryan, Albanie, Samuel, Shen, Sheng, Ben-David, Srulik, Bach, Stephen H., Kim, Taewoon, Bers, Tali, Fevry, Thibault, Neeraj, Trishala, Thakker, Urmish, Raunak, Vikas, Tang, Xiangru, Yong, Zheng-Xin, Sun, Zhiqing, Brody, Shaked, Uri, Yallow, Tojarieh, Hadar, Roberts, Adam, Chung, Hyung Won, Tae, Jaesung, Phang, Jason, Press, Ofir, Li, Conglong, Narayanan, Deepak, Bourfoune, Hatim, Casper, Jared, Rasley, Jeff, Ryabinin, Max, Mishra, Mayank, Zhang, Minjia, Shoeybi, Mohammad, Peyrounette, Myriam, Patry, Nicolas, Tazi, Nouamane, Sanseviero, Omar, von Platen, Patrick, Cornette, Pierre, Lavallée, Pierre François, Lacroix, Rémi, Rajbhandari, Samyam, Gandhi, Sanchit, Smith, Shaden, Requena, Stéphane, Patil, Suraj, Dettmers, Tim, Baruwa, Ahmed, Singh, Amanpreet, Cheveleva, Anastasia, Ligozat, Anne-Laure, Subramonian, Arjun, Névéol, Aurélie, Lovering, Charles, Garrette, Dan, Tunuguntla, Deepak, Reiter, Ehud, Taktasheva, Ekaterina, Voloshina, Ekaterina, Bogdanov, Eli, Winata, Genta Indra, Schoelkopf, Hailey, Kalo, Jan-Christoph, Novikova, Jekaterina, Forde, Jessica Zosa, Clive, Jordan, Kasai, Jungo, Kawamura, Ken, Hazan, Liam, Carpuat, Marine, Clinciu, Miruna, Kim, Najoung, Cheng, Newton, Serikov, Oleg, Antverg, Omer, van der Wal, Oskar, Zhang, Rui, Zhang, Ruochen, Gehrmann, Sebastian, Mirkin, Shachar, Pais, Shani, Shavrina, Tatiana, Scialom, Thomas, Yun, Tian, Limisiewicz, Tomasz, Rieser, Verena, Protasov, Vitaly, Mikhailov, Vladislav, Pruksachatkun, Yada, Belinkov, Yonatan, Bamberger, Zachary, Kasner, Zdeněk, Rueda, Alice, Pestana, Amanda, Feizpour, Amir, Khan, Ammar, Faranak, Amy, Santos, Ana, Hevia, Anthony, Unldreaj, Antigona, Aghagol, Arash, Abdollahi, Arezoo, Tammour, Aycha, HajiHosseini, Azadeh, Behroozi, Bahareh, Ajibade, Benjamin, Saxena, Bharat, Ferrandis, Carlos Muñoz, McDuff, Daniel, Contractor, Danish, Lansky, David, David, Davis, Kiela, Douwe, Nguyen, Duong A., Tan, Edward, Baylor, Emi, Ozoani, Ezinwanne, Mirza, Fatima, Ononiwu, Frankline, Rezanejad, Habib, Jones, Hessie, Bhattacharya, Indrani, Solaiman, Irene, Sedenko, Irina, Nejadgholi, Isar, Passmore, Jesse, Seltzer, Josh, Sanz, Julio Bonis, Dutra, Livia, Samagaio, Mairon, Elbadri, Maraim, Mieskes, Margot, Gerchick, Marissa, Akinlolu, Martha, McKenna, Michael, Qiu, Mike, Ghauri, Muhammed, Burynok, Mykola, Abrar, Nafis, Rajani, Nazneen, Elkott, Nour, Fahmy, Nour, Samuel, Olanrewaju, An, Ran, Kromann, Rasmus, Hao, Ryan, Alizadeh, Samira, Shubber, Sarmad, Wang, Silas, Roy, Sourav, Viguier, Sylvain, Le, Thanh, Oyebade, Tobi, Le, Trieu, Yang, Yoyo, Nguyen, Zach, Kashyap, Abhinav Ramesh, Palasciano, Alfredo, Callahan, Alison, Shukla, Anima, Miranda-Escalada, Antonio, Singh, Ayush, Beilharz, Benjamin, Wang, Bo, Brito, Caio, Zhou, Chenxi, Jain, Chirag, Xu, Chuxin, Fourrier, Clémentine, Periñán, Daniel León, Molano, Daniel, Yu, Dian, Manjavacas, Enrique, Barth, Fabio, Fuhrimann, Florian, Altay, Gabriel, Bayrak, Giyaseddin, Burns, Gully, Vrabec, Helena U., Bello, Imane, Dash, Ishani, Kang, Jihyun, Giorgi, John, Golde, Jonas, Posada, Jose David, Sivaraman, Karthik Rangasai, Bulchandani, Lokesh, Liu, Lu, Shinzato, Luisa, de Bykhovetz, Madeleine Hahn, Takeuchi, Maiko, Pàmies, Marc, Castillo, Maria A, Nezhurina, Marianna, Sänger, Mario, Samwald, Matthias, Cullan, Michael, Weinberg, Michael, De Wolf, Michiel, Mihaljcic, Mina, Liu, Minna, Freidank, Moritz, Kang, Myungsun, Seelam, Natasha, Dahlberg, Nathan, Broad, Nicholas Michio, Muellner, Nikolaus, Fung, Pascale, Haller, Patrick, Chandrasekhar, Ramya, Eisenberg, Renata, Martin, Robert, Canalli, Rodrigo, Su, Rosaline, Su, Ruisi, Cahyawijaya, Samuel, Garda, Samuele, Deshmukh, Shlok S, Mishra, Shubhanshu, Kiblawi, Sid, Ott, Simon, Sang-aroonsiri, Sinee, Kumar, Srishti, Schweter, Stefan, Bharati, Sushil, Laud, Tanmay, Gigant, Théo, Kainuma, Tomoya, Kusa, Wojciech, Labrak, Yanis, Bajaj, Yash Shailesh, Venkatraman, Yash, Xu, Yifan, Xu, Yingxin, Xu, Yu, Tan, Zhe, Xie, Zhongli, Ye, Zifan, Bras, Mathilde, Belkada, Younes, Wolf, Thomas
Large language models (LLMs) have been shown to be able to perform new tasks based on a few demonstrations or natural language instructions. While these capabilities have led to widespread adoption, most LLMs are developed by resource-rich organizations and are frequently kept from the public. As a step towards democratizing this powerful technology, we present BLOOM, a 176B-parameter open-access language model designed and built thanks to a collaboration of hundreds of researchers. BLOOM is a decoder-only Transformer language model that was trained on the ROOTS corpus, a dataset comprising hundreds of sources in 46 natural and 13 programming languages (59 in total). We find that BLOOM achieves competitive performance on a wide variety of benchmarks, with stronger results after undergoing multitask prompted finetuning. To facilitate future research and applications using LLMs, we publicly release our models and code under the Responsible AI License.
InfoDiffusion: Representation Learning Using Information Maximizing Diffusion Models
Wang, Yingheng, Schiff, Yair, Gokaslan, Aaron, Pan, Weishen, Wang, Fei, De Sa, Christopher, Kuleshov, Volodymyr
While diffusion models excel at generating high-quality samples, their latent variables typically lack semantic meaning and are not suitable for representation learning. Here, we propose InfoDiffusion, an algorithm that augments diffusion models with low-dimensional latent variables that capture high-level factors of variation in the data. InfoDiffusion relies on a learning objective regularized with the mutual information between observed and hidden variables, which improves latent space quality and prevents the latents from being ignored by expressive diffusion-based decoders. Empirically, we find that InfoDiffusion learns disentangled and human-interpretable latent representations that are competitive with state-of-the-art generative and contrastive methods, while retaining the high sample quality of diffusion models. Our method enables manipulating the attributes of generated images and has the potential to assist tasks that require exploring a learned latent space to generate quality samples, e.g., generative design.
Galactic: Scaling End-to-End Reinforcement Learning for Rearrangement at 100k Steps-Per-Second
Berges, Vincent-Pierre, Szot, Andrew, Chaplot, Devendra Singh, Gokaslan, Aaron, Mottaghi, Roozbeh, Batra, Dhruv, Undersander, Eric
We present Galactic, a large-scale simulation and reinforcement-learning (RL) framework for robotic mobile manipulation in indoor environments. Specifically, a Fetch robot (equipped with a mobile base, 7DoF arm, RGBD camera, egomotion, and onboard sensing) is spawned in a home environment and asked to rearrange objects - by navigating to an object, picking it up, navigating to a target location, and then placing the object at the target location. Galactic is fast. In terms of simulation speed (rendering + physics), Galactic achieves over 421,000 steps-per-second (SPS) on an 8-GPU node, which is 54x faster than Habitat 2.0 (7699 SPS). More importantly, Galactic was designed to optimize the entire rendering + physics + RL interplay since any bottleneck in the interplay slows down training. In terms of simulation+RL speed (rendering + physics + inference + learning), Galactic achieves over 108,000 SPS, which 88x faster than Habitat 2.0 (1243 SPS). These massive speed-ups not only drastically cut the wall-clock training time of existing experiments, but also unlock an unprecedented scale of new experiments. First, Galactic can train a mobile pick skill to >80% accuracy in under 16 minutes, a 100x speedup compared to the over 24 hours it takes to train the same skill in Habitat 2.0. Second, we use Galactic to perform the largest-scale experiment to date for rearrangement using 5B steps of experience in 46 hours, which is equivalent to 20 years of robot experience. This scaling results in a single neural network composed of task-agnostic components achieving 85% success in GeometricGoal rearrangement, compared to 0% success reported in Habitat 2.0 for the same approach. The code is available at github.com/facebookresearch/galactic.
The BigScience ROOTS Corpus: A 1.6TB Composite Multilingual Dataset
Laurençon, Hugo, Saulnier, Lucile, Wang, Thomas, Akiki, Christopher, del Moral, Albert Villanova, Scao, Teven Le, Von Werra, Leandro, Mou, Chenghao, Ponferrada, Eduardo González, Nguyen, Huu, Frohberg, Jörg, Šaško, Mario, Lhoest, Quentin, McMillan-Major, Angelina, Dupont, Gerard, Biderman, Stella, Rogers, Anna, allal, Loubna Ben, De Toni, Francesco, Pistilli, Giada, Nguyen, Olivier, Nikpoor, Somaieh, Masoud, Maraim, Colombo, Pierre, de la Rosa, Javier, Villegas, Paulo, Thrush, Tristan, Longpre, Shayne, Nagel, Sebastian, Weber, Leon, Muñoz, Manuel, Zhu, Jian, Van Strien, Daniel, Alyafeai, Zaid, Almubarak, Khalid, Vu, Minh Chien, Gonzalez-Dios, Itziar, Soroa, Aitor, Lo, Kyle, Dey, Manan, Suarez, Pedro Ortiz, Gokaslan, Aaron, Bose, Shamik, Adelani, David, Phan, Long, Tran, Hieu, Yu, Ian, Pai, Suhas, Chim, Jenny, Lepercq, Violette, Ilic, Suzana, Mitchell, Margaret, Luccioni, Sasha Alexandra, Jernite, Yacine
As language models grow ever larger, the need for large-scale high-quality text datasets has never been more pressing, especially in multilingual settings. The BigScience workshop, a 1-year international and multidisciplinary initiative, was formed with the goal of researching and training large language models as a values-driven undertaking, putting issues of ethics, harm, and governance in the foreground. This paper documents the data creation and curation efforts undertaken by BigScience to assemble the Responsible Open-science Open-collaboration Text Sources (ROOTS) corpus, a 1.6TB dataset spanning 59 languages that was used to train the 176-billion-parameter BigScience Large Open-science Open-access Multilingual (BLOOM)(BigScience Workshop, 2022) language model. We further release a large initial subset of the corpus and analyses thereof, and hope to empower large-scale monolingual and multilingual modeling projects with both the data and the processing tools, as well as stimulate research around this large multilingual corpus.