Goto

Collaborating Authors

 Goan, Ethan


Piecewise Deterministic Markov Processes for Bayesian Neural Networks

arXiv.org Machine Learning

Inference on modern Bayesian Neural Networks (BNNs) often relies on a variational inference treatment, imposing violated assumptions of independence and the form of the posterior. Traditional MCMC approaches avoid these assumptions at the cost of increased computation due to its incompatibility to subsampling of the likelihood. New Piecewise Deterministic Markov Process (PDMP) samplers permit subsampling, though introduce a model specific inhomogenous Poisson Process (IPPs) which is difficult to sample from. This work introduces a new generic and adaptive thinning scheme for sampling from these IPPs, and demonstrates how this approach can accelerate the application of PDMPs for inference in BNNs. Experimentation illustrates how inference with these methods is computationally feasible, can improve predictive accuracy, MCMC mixing performance, and provide informative uncertainty measurements when compared against other approximate inference schemes.


Uncertainty in Real-Time Semantic Segmentation on Embedded Systems

arXiv.org Artificial Intelligence

Application for semantic segmentation models in areas such as autonomous vehicles and human computer interaction require real-time predictive capabilities. The challenges of addressing real-time application is amplified by the need to operate on resource constrained hardware. Whilst development of real-time methods for these platforms has increased, these models are unable to sufficiently reason about uncertainty present when applied on embedded real-time systems. This paper addresses this by combining deep feature extraction from pre-trained models with Bayesian regression and moment propagation for uncertainty aware predictions. We demonstrate how the proposed method can yield meaningful epistemic uncertainty on embedded hardware in real-time whilst maintaining predictive performance.


Bayesian Neural Networks: An Introduction and Survey

arXiv.org Machine Learning

Neural Networks (NNs) have provided state-of-the-art results for many challenging machine learning tasks such as detection, regression and classification across the domains of computer vision, speech recognition and natural language processing. Despite their success, they are often implemented in a frequentist scheme, meaning they are unable to reason about uncertainty in their predictions. This article introduces Bayesian Neural Networks (BNNs) and the seminal research regarding their implementation. Different approximate inference methods are compared, and used to highlight where future research can improve on current methods.