Gnad, Daniel
Counting and Reasoning with Plans
Speck, David, Hecher, Markus, Gnad, Daniel, Fichte, Johannes K., Corrêa, Augusto B.
Classical planning asks for a sequence of operators reaching a given goal. While the most common case is to compute a plan, many scenarios require more than that. However, quantitative reasoning on the plan space remains mostly unexplored. A fundamental problem is to count plans, which relates to the conditional probability on the plan space. Indeed, qualitative and quantitative approaches are well-established in various other areas of automated reasoning. We present the first study to quantitative and qualitative reasoning on the plan space. In particular, we focus on polynomially bounded plans. On the theoretical side, we study its complexity, which gives rise to rich reasoning modes. Since counting is hard in general, we introduce the easier notion of facets, which enables understanding the significance of operators. On the practical side, we implement quantitative reasoning for planning. Thereby, we transform a planning task into a propositional formula and use knowledge compilation to count different plans. This framework scales well to large plan spaces, while enabling rich reasoning capabilities such as learning pruning functions and explainable planning.
Strong Stubborn Set Pruning for Star-Topology Decoupled State Space Search
Gnad, Daniel, Hoffmann, Jörg, Wehrle, Martin
Analyzing reachability in large discrete transition systems is an important sub-problem in several areas of AI, and of CS in general. State space search is a basic method for conducting such an analysis. A wealth of techniques have been proposed to reduce the search space without affecting the existence of (optimal) solution paths. In particular, strong stubborn set (SSS) pruning is a prominent such method, analyzing action dependencies to prune commutative parts of the search space. We herein show how to apply this idea to star-topology decoupled state space search, a recent search reformulation method invented in the context of classical AI planning. Star-topology decoupled state space search, short decoupled search, addresses planning tasks where a single center component interacts with several leaf components. The search exploits a form of conditional independence arising in this setting: given a fixed path p of transitions by the center, the possible leaf moves compliant with p are independent across the leaves. Decoupled search thus searches over center paths only, maintaining the compliant paths for each leaf separately. This avoids the enumeration of combined states across leaves. Just like standard search, decoupled search is adversely affected by commutative parts of its search space. The adaptation of strong stubborn set pruning is challenging due to the more complex structure of the search space, and the resulting ways in which action dependencies may affect the search. We spell out how to address this challenge, designing optimality-preserving decoupled strong stubborn set (DSSS) pruning methods. We introduce a design for star topologies in full generality, as well as simpler design variants for the practically relevant fork and inverted fork special cases. We show that there are cases where DSSS pruning is exponentially more effective than both, decoupled search and SSS pruning, exhibiting true synergy where the whole is more than the sum of its parts. Empirically, DSSS pruning reliably inherits the best of its components, and sometimes outperforms both.
Beyond Red-Black Planning: Limited-Memory State Variables
Speicher, Patrick (Saarland University) | Steinmetz, Marcel (Saarland University) | Gnad, Daniel (Saarland University) | Hoffmann, Jörg (Saarland University) | Gerevini, Alfonso (University of Brescia)
This is coarse-grained in that, for each variable, it either remembers all past values (red), or remembers only the most recent one (black). We herein introduce limited-memory state variables, that remember a subset of their most recent values. It turns out that planning is still PSPACE-complete even when the memory is large enough to store all but a single value. Nevertheless, limited memory can be used to substantially broaden a known tractable fragment of red-black planning, yielding better heuristic functions in some domains.