Gluck, Mark A.
What Does the Hippocampus Compute?: A Precis of the 1993 NIPS Workshop
Gluck, Mark A.
Computational models of the hippocampal-region provide an important method for understanding the functional role of this brain system in learning and memory. The presentations in this workshop focused on how modeling can lead to a unified understanding of the interplay among hippocampal physiology, anatomy, and behavior. One approach can be characterized as "top-down" analyses of the neuropsychology of memory, drawing upon brain-lesion studies in animals and humans. Other models take a "bottom-up" approach, seeking to infer emergent computational and functional properties from detailed analyses of circuit connectivity and physiology (see Gluck & Granger, 1993, for a review). Among the issues discussed were: (1) integration of physiological and behavioral theories of hippocampal function, (2) similarities and differences between animal and human studies, (3) representational vs. temporal properties of hippocampaldependent behaviors,(4) rapid vs. incremental learning, (5) mUltiple vs. unitary memory systems, (5) spatial navigation and memory, and (6) hippocampal interaction with other brain systems.
What Does the Hippocampus Compute?: A Precis of the 1993 NIPS Workshop
Gluck, Mark A.
What Does the Hippocampus Compute?: A Precis of the 1993 NIPS Workshop Computational models of the hippocampal-region provide an important method for understanding the functional role of this brain system in learning and memory. The presentations in this workshop focused on how modeling can lead to a unified understanding of the interplay among hippocampal physiology, anatomy, and behavior. One approach can be characterized as "top-down" analyses of the neuropsychology of memory, drawing upon brain-lesion studies in animals and humans. Other models take a "bottom-up" approach, seeking to infer emergent computational and functional properties from detailed analyses of circuit connectivity and physiology (see Gluck & Granger, 1993, for a review). Among the issues discussed were: (1) integration of physiological and behavioral theories of hippocampal function, (2) similarities and differences between animal and human studies, (3) representational vs. temporal properties of hippocampaldependent behaviors, (4) rapid vs. incremental learning, (5) mUltiple vs. unitary memory systems, (5) spatial navigation and memory, and (6) hippocampal interaction with other brain systems.
What Does the Hippocampus Compute?: A Precis of the 1993 NIPS Workshop
Gluck, Mark A.
What Does the Hippocampus Compute?: A Precis of the 1993 NIPS Workshop Computational models of the hippocampal-region provide an important method for understanding the functional role of this brain system in learning and memory. The presentations in this workshop focused on how modeling can lead to a unified understanding of the interplay among hippocampal physiology, anatomy, and behavior. One approach can be characterized as "top-down" analyses of the neuropsychology of memory, drawing upon brain-lesion studies in animals and humans. Other models take a "bottom-up" approach, seeking to infer emergent computational and functional properties from detailed analyses of circuit connectivity and physiology (see Gluck & Granger, 1993, for a review). Among the issues discussed were: (1) integration of physiological and behavioral theories of hippocampal function, (2) similarities and differences between animal and human studies, (3) representational vs. temporal properties of hippocampaldependent behaviors, (4) rapid vs. incremental learning, (5) mUltiple vs. unitary memory systems, (5) spatial navigation and memory, and (6) hippocampal interaction with other brain systems.
Adaptive Stimulus Representations: A Computational Theory of Hippocampal-Region Function
Gluck, Mark A., Myers, Catherine E.
We present a theory of cortico-hippocampal interaction in discrimination learning. The hippocampal region is presumed to form new stimulus representations which facilitate learning by enhancing the discriminability of predictive stimuli and compressing stimulus-stimulus redundancies. The cortical and cerebellar regions, which are the sites of long-term memory.
Adaptive Stimulus Representations: A Computational Theory of Hippocampal-Region Function
Gluck, Mark A., Myers, Catherine E.
We present a theory of cortico-hippocampal interaction in discrimination learning. The hippocampal region is presumed to form new stimulus representations which facilitate learning by enhancing the discriminability of predictive stimuli and compressing stimulus-stimulus redundancies. The cortical and cerebellar regions, which are the sites of long-term memory.
Adaptive Stimulus Representations: A Computational Theory of Hippocampal-Region Function
Gluck, Mark A., Myers, Catherine E.
We present a theory of cortico-hippocampal interaction in discrimination learning. The hippocampal region is presumed to form new stimulus representations which facilitate learning by enhancing the discriminability of predictive stimuli and compressing stimulus-stimulus redundancies. The cortical and cerebellar regions, which are the sites of long-term memory.
Spherical Units as Dynamic Consequential Regions: Implications for Attention, Competition and Categorization
Hanson, Stephen Jose, Gluck, Mark A.
Spherical Units can be used to construct dynamic reconfigurable consequential regions, the geometric bases for Shepard's (1987) theory of stimulus generalization in animals and humans. We derive from Shepard's (1987) generalization theory a particular multi-layer network with dynamic (centers and radii) spherical regions which possesses a specific mass function (Cauchy). This learning model generalizes the configural-cue network model (Gluck & Bower 1988): (1) configural cues can be learned and do not require pre-wiring the power-set of cues, (2) Consequential regions are continuous rather than discrete and (3) Competition amoungst receptive fields is shown to be increased by the global extent of a particular mass function (Cauchy). We compare other common mass functions (Gaussian; used in models of Moody & Darken; 1989, Krushke, 1990) or just standard backpropogation networks with hyperplane/logistic hidden units showing that neither fare as well as models of human generalization and learning.
Spherical Units as Dynamic Consequential Regions: Implications for Attention, Competition and Categorization
Hanson, Stephen Jose, Gluck, Mark A.
Spherical Units can be used to construct dynamic reconfigurable consequential regions, the geometric bases for Shepard's (1987) theory of stimulus generalization in animals and humans. We derive from Shepard's (1987) generalization theory a particular multi-layer network with dynamic (centers and radii) spherical regions which possesses a specific mass function (Cauchy). This learning model generalizes the configural-cue network model (Gluck & Bower 1988): (1) configural cues can be learned and do not require pre-wiring the power-set of cues, (2) Consequential regions are continuous rather than discrete and (3) Competition amoungst receptive fields is shown to be increased by the global extent of a particular mass function (Cauchy). We compare other common mass functions (Gaussian; used in models of Moody & Darken; 1989, Krushke, 1990) or just standard backpropogation networks with hyperplane/logistic hidden units showing that neither fare as well as models of human generalization and learning.
Spherical Units as Dynamic Consequential Regions: Implications for Attention, Competition and Categorization
Hanson, Stephen Jose, Gluck, Mark A.
Spherical Units can be used to construct dynamic reconfigurable consequential regions, the geometric bases for Shepard's (1987) theory of stimulus generalization in animals and humans. We derive from Shepard's (1987) generalization theory a particular multi-layer network with dynamic (centers and radii) spherical regions which possesses a specific mass function (Cauchy). This learning model generalizes the configural-cue network model (Gluck & Bower 1988): (1) configural cues can be learned and do not require pre-wiring the power-set of cues, (2) Consequential regions are continuous rather than discrete and (3) Competition amoungst receptive fields is shown to be increased by the global extent of a particular mass function (Cauchy). We compare other common mass functions (Gaussian; used in models of Moody & Darken; 1989, Krushke, 1990) or just standard backpropogation networks with hyperplane/logistic hidden units showing that neither fare as well as models of human generalization and learning.
Constraints on Adaptive Networks for Modeling Human Generalization
Gluck, Mark A., Pavel, M., Henkle, Van
CA 94305 ABSTRACT The potential of adaptive networks to learn categorization rules and to model human performance is studied by comparing how natural and artificial systems respond to new inputs, i.e., how they generalize. Like humans, networks can learn a detenninistic categorization task by a variety of alternative individual solutions. An analysis of the constraints imposed by using networks with the minimal number of hidden units shows that this "minimal configuration" constraint is not sufficient A further analysis of human and network generalizations indicates that initial conditions may provide important constraints on generalization. A new technique, which we call "reversed learning", is described for finding appropriate initial conditions. INTRODUCTION We are investigating the potential of adaptive networks to learn categorization tasks and to model human performance.