Spherical Units as Dynamic Consequential Regions: Implications for Attention, Competition and Categorization
Hanson, Stephen Jose, Gluck, Mark A.
–Neural Information Processing Systems
Spherical Units can be used to construct dynamic reconfigurable consequential regions, the geometric bases for Shepard's (1987) theory of stimulus generalization in animals and humans. We derive from Shepard's (1987) generalization theory a particular multi-layer network with dynamic (centers and radii) spherical regions which possesses a specific mass function (Cauchy). This learning model generalizes the configural-cue network model (Gluck & Bower 1988): (1) configural cues can be learned and do not require pre-wiring the power-set of cues, (2) Consequential regions are continuous rather than discrete and (3) Competition amoungst receptive fields is shown to be increased by the global extent of a particular mass function (Cauchy). We compare other common mass functions (Gaussian; used in models of Moody & Darken; 1989, Krushke, 1990) or just standard backpropogation networks with hyperplane/logistic hidden units showing that neither fare as well as models of human generalization and learning.
Neural Information Processing Systems
Dec-31-1991