Goto

Collaborating Authors

 Givan, Robert


Inductive Policy Selection for First-Order MDPs

arXiv.org Artificial Intelligence

We select policies for large Markov Decision Processes (MDPs) with compact first-order representations. We find policies that generalize well as the number of objects in the domain grows, potentially without bound. Existing dynamic-programming approaches based on flat, propositional, or first-order representations either are impractical here or do not naturally scale as the number of objects grows without bound. We implement and evaluate an alternative approach that induces first-order policies using training data constructed by solving small problem instances using PGraphplan (Blum & Langford, 1999). Our policies are represented as ensembles of decision lists, using a taxonomic concept language. This approach extends the work of Martin and Geffner (2000) to stochastic domains, ensemble learning, and a wider variety of problems. Empirically, we find "good" policies for several stochastic first-order MDPs that are beyond the scope of previous approaches. We also discuss the application of this work to the relational reinforcement-learning problem.


Estimating Densities with Non-Parametric Exponential Families

arXiv.org Machine Learning

We propose a novel approach for density estimation with exponential families for the case when the true density may not fall within the chosen family. Our approach augments the sufficient statistics with features designed to accumulate probability mass in the neighborhood of the observed points, resulting in a non-parametric model similar to kernel density estimators. We show that under mild conditions, the resulting model uses only the sufficient statistics if the density is within the chosen exponential family, and asymptotically, it approximates densities outside of the chosen exponential family. Using the proposed approach, we modify the exponential random graph model, commonly used for modeling small-size graph distributions, to address the well-known issue of model degeneracy.


Approximate Policy Iteration with a Policy Language Bias

Neural Information Processing Systems

We explore approximate policy iteration, replacing the usual costfunction learning step with a learning step in policy space. We give policy-language biases that enable solution of very large relational Markov decision processes (MDPs) that no previous technique can solve. In particular, we induce high-quality domain-specific planners for classical planning domains (both deterministic and stochastic variants) by solving such domains as extremely large MDPs.


Approximate Policy Iteration with a Policy Language Bias

Neural Information Processing Systems

We explore approximate policy iteration, replacing the usual costfunction learning step with a learning step in policy space. We give policy-language biases that enable solution of very large relational Markov decision processes (MDPs) that no previous technique can solve. In particular, we induce high-quality domain-specific planners for classical planning domains (both deterministic and stochastic variants) by solving such domains as extremely large MDPs.


Approximate Policy Iteration with a Policy Language Bias

Neural Information Processing Systems

We explore approximate policy iteration, replacing the usual costfunction learningstep with a learning step in policy space. We give policy-language biases that enable solution of very large relational Markov decision processes (MDPs) that no previous technique can solve. In particular, we induce high-quality domain-specific planners for classical planningdomains (both deterministic and stochastic variants) by solving such domains as extremely large MDPs.