Goto

Collaborating Authors

 Girin, Laurent


AnCoGen: Analysis, Control and Generation of Speech with a Masked Autoencoder

arXiv.org Artificial Intelligence

Abstract--This article introduces AnCoGen, a novel method that leverages a masked autoencoder to unify the analysis, control, and generation of speech signals within a single model. AnCoGen can analyze speech by estimating key attributes, such as speaker identity, pitch, content, loudness, signal-to-noise ratio, and clarity index. In addition, it can generate speech from these attributes and allow precise control of the synthesized speech by modifying them. Extensive experiments demonstrated the effectiveness of AnCoGen across speech analysisresynthesis, pitch estimation, pitch modification, and speech enhancement. Over the years, many speech processing algorithms have been In this paper, we introduce AnCoGen for analyzing, controlling, developed to analyze, transform, and synthesize speech signals.


Fill in the Gap! Combining Self-supervised Representation Learning with Neural Audio Synthesis for Speech Inpainting

arXiv.org Artificial Intelligence

Most speech self-supervised learning (SSL) models are trained with a pretext task which consists in predicting missing parts of the input signal, either future segments (causal prediction) or segments masked anywhere within the input (non-causal prediction). Learned speech representations can then be efficiently transferred to downstream tasks (e.g., automatic speech or speaker recognition). In the present study, we investigate the use of a speech SSL model for speech inpainting, that is reconstructing a missing portion of a speech signal from its surrounding context, i.e., fulfilling a downstream task that is very similar to the pretext task. To that purpose, we combine an SSL encoder, namely HuBERT, with a neural vocoder, namely HiFiGAN, playing the role of a decoder. In particular, we propose two solutions to match the HuBERT output with the HiFiGAN input, by freezing one and fine-tuning the other, and vice versa. Performance of both approaches was assessed in single- and multi-speaker settings, for both informed and blind inpainting configurations (i.e., the position of the mask is known or unknown, respectively), with different objective metrics and a perceptual evaluation. Performances show that if both solutions allow to correctly reconstruct signal portions up to the size of 200ms (and even 400ms in some cases), fine-tuning the SSL encoder provides a more accurate signal reconstruction in the single-speaker setting case, while freezing it (and training the neural vocoder instead) is a better strategy when dealing with multi-speaker data.


Mixture of Dynamical Variational Autoencoders for Multi-Source Trajectory Modeling and Separation

arXiv.org Artificial Intelligence

In this paper, we propose a latent-variable generative model called mixture of dynamical variational autoencoders (MixDV AE) to model the dynamics of a system composed of multiple moving sources. A DV AE model is pre-trained on a single-source dataset to capture the source dynamics. Then, multiple instances of the pre-trained DV AE model are integrated into a multi-source mixture model with a discrete observation-to-source assignment latent variable. The posterior distributions of both the discrete observation-to-source assignment variable and the continuous DV AE variables representing the sources content/position are estimated using a variational expectation-maximization algorithm, leading to multi-source trajectories estimation. We illustrate the versatility of the proposed MixDV AE model on two tasks: a computer vision task, namely multi-object tracking, and an audio processing task, namely single-channel audio source separation. Experimental results show that the proposed method works well on these two tasks, and outperforms several baseline methods.


Unsupervised speech enhancement with deep dynamical generative speech and noise models

arXiv.org Artificial Intelligence

ND methods use noise or noisy speech enhancement using a dynamical variational autoencoder speech training samples to learn some noise characteristics. In (DVAE) as the clean speech model and non-negative matrix factorization contrast, NA methods only use clean speech signals for training (NMF) as the noise model. We propose to replace and the noise characteristics are estimated at test time for the NMF noise model with a deep dynamical generative model each noisy speech sequence to process. A typical unsupervised (DDGM) depending either on the DVAE latent variables, or on NA approach uses a pre-trained variational autoencoder (VAE) the noisy observations, or on both. This DDGM can be trained as a prior distribution of the clean speech signal and a nonnegative in three configurations: noise-agnostic, noise-dependent and matrix factorization (NMF) model for the noise variance noise adaptation after noise-dependent training.


Speech Modeling with a Hierarchical Transformer Dynamical VAE

arXiv.org Artificial Intelligence

The dynamical variational autoencoders (DVAEs) are a family of latent-variable deep generative models that extends the VAE to model a sequence of observed data and a corresponding sequence of latent vectors. In almost all the DVAEs of the literature, the temporal dependencies within each sequence and across the two sequences are modeled with recurrent neural networks. In this paper, we propose to model speech signals with the Hierarchical Transformer DVAE (HiT-DVAE), which is a DVAE with two levels of latent variable (sequence-wise and frame-wise) and in which the temporal dependencies are implemented with the Transformer architecture. We show that HiT-DVAE outperforms several other DVAEs for speech spectrogram modeling, while enabling a simpler training procedure, revealing its high potential for downstream low-level speech processing tasks such as speech enhancement.


A Multimodal Dynamical Variational Autoencoder for Audiovisual Speech Representation Learning

arXiv.org Artificial Intelligence

In this paper, we present a multimodal \textit{and} dynamical VAE (MDVAE) applied to unsupervised audio-visual speech representation learning. The latent space is structured to dissociate the latent dynamical factors that are shared between the modalities from those that are specific to each modality. A static latent variable is also introduced to encode the information that is constant over time within an audiovisual speech sequence. The model is trained in an unsupervised manner on an audiovisual emotional speech dataset, in two stages. In the first stage, a vector quantized VAE (VQ-VAE) is learned independently for each modality, without temporal modeling. The second stage consists in learning the MDVAE model on the intermediate representation of the VQ-VAEs before quantization. The disentanglement between static versus dynamical and modality-specific versus modality-common information occurs during this second training stage. Extensive experiments are conducted to investigate how audiovisual speech latent factors are encoded in the latent space of MDVAE. These experiments include manipulating audiovisual speech, audiovisual facial image denoising, and audiovisual speech emotion recognition. The results show that MDVAE effectively combines the audio and visual information in its latent space. They also show that the learned static representation of audiovisual speech can be used for emotion recognition with few labeled data, and with better accuracy compared with unimodal baselines and a state-of-the-art supervised model based on an audiovisual transformer architecture.


Learning and controlling the source-filter representation of speech with a variational autoencoder

arXiv.org Artificial Intelligence

Understanding and controlling latent representations in deep generative models is a challenging yet important problem for analyzing, transforming and generating various types of data. In speech processing, inspiring from the anatomical mechanisms of phonation, the source-filter model considers that speech signals are produced from a few independent and physically meaningful continuous latent factors, among which the fundamental frequency $f_0$ and the formants are of primary importance. In this work, we start from a variational autoencoder (VAE) trained in an unsupervised manner on a large dataset of unlabeled natural speech signals, and we show that the source-filter model of speech production naturally arises as orthogonal subspaces of the VAE latent space. Using only a few seconds of labeled speech signals generated with an artificial speech synthesizer, we propose a method to identify the latent subspaces encoding $f_0$ and the first three formant frequencies, we show that these subspaces are orthogonal, and based on this orthogonality, we develop a method to accurately and independently control the source-filter speech factors within the latent subspaces. Without requiring additional information such as text or human-labeled data, this results in a deep generative model of speech spectrograms that is conditioned on $f_0$ and the formant frequencies, and which is applied to the transformation speech signals. Finally, we also propose a robust $f_0$ estimation method that exploits the projection of a speech signal onto the learned latent subspace associated with $f_0$.


Unsupervised Speech Enhancement using Dynamical Variational Auto-Encoders

arXiv.org Artificial Intelligence

Dynamical variational autoencoders (DVAEs) are a class of deep generative models with latent variables, dedicated to model time series of high-dimensional data. DVAEs can be considered as extensions of the variational autoencoder (VAE) that include temporal dependencies between successive observed and/or latent vectors. Previous work has shown the interest of using DVAEs over the VAE for speech spectrograms modeling. Independently, the VAE has been successfully applied to speech enhancement in noise, in an unsupervised noise-agnostic set-up that requires neither noise samples nor noisy speech samples at training time, but only requires clean speech signals. In this paper, we extend these works to DVAE-based single-channel unsupervised speech enhancement, hence exploiting both speech signals unsupervised representation learning and dynamics modeling. We propose an unsupervised speech enhancement algorithm that combines a DVAE speech prior pre-trained on clean speech signals with a noise model based on nonnegative matrix factorization, and we derive a variational expectation-maximization (VEM) algorithm to perform speech enhancement. The algorithm is presented with the most general DVAE formulation and is then applied with three specific DVAE models to illustrate the versatility of the framework. Experimental results show that the proposed DVAE-based approach outperforms its VAE-based counterpart, as well as several supervised and unsupervised noise-dependent baselines, especially when the noise type is unseen during training.


A Survey of Sound Source Localization with Deep Learning Methods

arXiv.org Artificial Intelligence

This article is a survey on deep learning methods for single and multiple sound source localization. We are particularly interested in sound source localization in indoor/domestic environment, where reverberation and diffuse noise are present. We provide an exhaustive topography of the neural-based localization literature in this context, organized according to several aspects: the neural network architecture, the type of input features, the output strategy (classification or regression), the types of data used for model training and evaluation, and the model training strategy. This way, an interested reader can easily comprehend the vast panorama of the deep learning-based sound source localization methods. Tables summarizing the literature survey are provided at the end of the paper for a quick search of methods with a given set of target characteristics.


Dynamical Variational Autoencoders: A Comprehensive Review

arXiv.org Machine Learning

The Variational Autoencoder (VAE) is a powerful deep generative model that is now extensively used to represent high-dimensional complex data via a low-dimensional latent space that is learned in an unsupervised manner. In the original VAE model, input data vectors are processed independently. In the recent years, a series of papers have presented different extensions of the VAE to sequential data, that not only model the latent space, but also model the temporal dependencies within a sequence of data vectors and/or corresponding latent vectors, relying on recurrent neural networks or state space models. In this paper we perform an extensive literature review of these models. Importantly, we introduce and discuss a general class of models called Dynamical Variational Autoencoders (DVAEs) that encompass a large subset of these temporal VAE extensions. Then we present in details seven different instances of DVAE that were recently proposed in the literature, with an effort to homogenize the notations and presentation lines, as well as to relate those models with existing classical temporal models (that are also presented for the sake of completeness). We reimplemented those seven DVAE models and we present the results of an experimental benchmark that we conducted on the speech analysis-resynthesis task (the PyTorch code will be made publicly available). An extensive discussion is presented at the end of the paper, aiming to comment on important issues concerning the DVAE class of models and to describe future research guidelines.