Goto

Collaborating Authors

 Gilboa, Dar


Quantum advantage for learning shallow neural networks with natural data distributions

arXiv.org Artificial Intelligence

The application of quantum computers to machine learning tasks is an exciting potential direction to explore in search of quantum advantage. In the absence of large quantum computers to empirically evaluate performance, theoretical frameworks such as the quantum probably approximately correct (PAC) and quantum statistical query (QSQ) models have been proposed to study quantum algorithms for learning classical functions. Despite numerous works investigating quantum advantage in these models, we nevertheless only understand it at two extremes: either exponential quantum advantages for uniform input distributions or no advantage for potentially adversarial distributions. In this work, we study the gap between these two regimes by designing an efficient quantum algorithm for learning periodic neurons in the QSQ model over a broad range of non-uniform distributions, which includes Gaussian, generalized Gaussian, and logistic distributions. To our knowledge, our work is also the first result in quantum learning theory for classical functions that explicitly considers real-valued functions. Recent advances in classical learning theory prove that learning periodic neurons is hard for any classical gradient-based algorithm, giving us an exponential quantum advantage over such algorithms, which are the standard workhorses of machine learning. Moreover, in some parameter regimes, the problem remains hard for classical statistical query algorithms and even general classical algorithms learning under small amounts of noise.


Exponential Quantum Communication Advantage in Distributed Learning

arXiv.org Machine Learning

As the scale of the datasets and parameterized models used to perform computation over data continues to grow [43, 53], distributing workloads across multiple devices becomes essential for enabling progress. The choice of architecture for large-scale training and inference must not only make the best use of computational and memory resources, but also contend with the fact that communication may become a bottleneck [85]. When using modern optical interconnects, classical computers exchange bits represented by light. This however does not fully utilize the potential of the physical substrate; given suitable computational capabilities and algorithms, the quantum nature of light can be harnessed as a powerful communication resource. Here we show that for a broad class of parameterized models, if quantum bits (qubits) are communicated instead of classical bits, an exponential reduction in the communication required to perform inference and gradientbased training can be achieved. This protocol additionally guarantees improved privacy of both the user data and model parameters through natural features of quantum mechanics, without the need for additional cryptographic or privacy protocols. To our knowledge, this is the first example of generic, exponential quantum advantage on problems that occur naturally in the training and deployment of large machine learning models. These types of communication advantages help scope the future roles and interplay between quantum and classical communication for distributed machine learning.


Beyond the Imitation Game: Quantifying and extrapolating the capabilities of language models

arXiv.org Artificial Intelligence

Language models demonstrate both quantitative improvement and new qualitative capabilities with increasing scale. Despite their potentially transformative impact, these new capabilities are as yet poorly characterized. In order to inform future research, prepare for disruptive new model capabilities, and ameliorate socially harmful effects, it is vital that we understand the present and near-future capabilities and limitations of language models. To address this challenge, we introduce the Beyond the Imitation Game benchmark (BIG-bench). BIG-bench currently consists of 204 tasks, contributed by 450 authors across 132 institutions. Task topics are diverse, drawing problems from linguistics, childhood development, math, common-sense reasoning, biology, physics, social bias, software development, and beyond. BIG-bench focuses on tasks that are believed to be beyond the capabilities of current language models. We evaluate the behavior of OpenAI's GPT models, Google-internal dense transformer architectures, and Switch-style sparse transformers on BIG-bench, across model sizes spanning millions to hundreds of billions of parameters. In addition, a team of human expert raters performed all tasks in order to provide a strong baseline. Findings include: model performance and calibration both improve with scale, but are poor in absolute terms (and when compared with rater performance); performance is remarkably similar across model classes, though with benefits from sparsity; tasks that improve gradually and predictably commonly involve a large knowledge or memorization component, whereas tasks that exhibit "breakthrough" behavior at a critical scale often involve multiple steps or components, or brittle metrics; social bias typically increases with scale in settings with ambiguous context, but this can be improved with prompting.


On quantum backpropagation, information reuse, and cheating measurement collapse

arXiv.org Artificial Intelligence

The success of modern deep learning hinges on the ability to train neural networks at scale. Through clever reuse of intermediate information, backpropagation facilitates training through gradient computation at a total cost roughly proportional to running the function, rather than incurring an additional factor proportional to the number of parameters - which can now be in the trillions. Naively, one expects that quantum measurement collapse entirely rules out the reuse of quantum information as in backpropagation. But recent developments in shadow tomography, which assumes access to multiple copies of a quantum state, have challenged that notion. Here, we investigate whether parameterized quantum models can train as efficiently as classical neural networks. We show that achieving backpropagation scaling is impossible without access to multiple copies of a state. With this added ability, we introduce an algorithm with foundations in shadow tomography that matches backpropagation scaling in quantum resources while reducing classical auxiliary computational costs to open problems in shadow tomography. These results highlight the nuance of reusing quantum information for practical purposes and clarify the unique difficulties in training large quantum models, which could alter the course of quantum machine learning.


Marginalizable Density Models

arXiv.org Machine Learning

Probability density models based on deep networks have achieved remarkable success in modeling complex high-dimensional datasets. However, unlike kernel density estimators, modern neural models do not yield marginals or conditionals in closed form, as these quantities require the evaluation of seldom tractable integrals. In this work, we present the marginalizable density model approximator (MDMA), a novel deep network architecture which provides closed form expressions for the probabilities, marginals and conditionals of any subset of the variables. The MDMA learns deep scalar representations for each individual variable and combines them via learned hierarchical tensor decompositions into a tractable yet expressive CDF, from which marginals and conditional densities are easily obtained. We illustrate the advantage of exact marginalizability in several tasks that are out of reach of previous deep network-based density estimation models, such as estimating mutual information between arbitrary subsets of variables, inferring causality by testing for conditional independence, and inference with missing data without the need for data imputation, outperforming state-of-the-art models on these tasks. The model also allows for parallelized sampling with only a logarithmic dependence of the time complexity on the number of variables.


Deep Networks and the Multiple Manifold Problem

arXiv.org Machine Learning

We study the multiple manifold problem, a binary classification task modeled on applications in machine vision, in which a deep fully-connected neural network is trained to separate two low-dimensional submanifolds of the unit sphere. We provide an analysis of the one-dimensional case, proving for a simple manifold configuration that when the network depth $L$ is large relative to certain geometric and statistical properties of the data, the network width $n$ grows as a sufficiently large polynomial in $L$, and the number of i.i.d. samples from the manifolds is polynomial in $L$, randomly-initialized gradient descent rapidly learns to classify the two manifolds perfectly with high probability. Our analysis demonstrates concrete benefits of depth and width in the context of a practically-motivated model problem: the depth acts as a fitting resource, with larger depths corresponding to smoother networks that can more readily separate the class manifolds, and the width acts as a statistical resource, enabling concentration of the randomly-initialized network and its gradients. The argument centers around the neural tangent kernel and its role in the nonasymptotic analysis of training overparameterized neural networks; to this literature, we contribute essentially optimal rates of concentration for the neural tangent kernel of deep fully-connected networks, requiring width $n \gtrsim L\,\mathrm{poly}(d_0)$ to achieve uniform concentration of the initial kernel over a $d_0$-dimensional submanifold of the unit sphere $\mathbb{S}^{n_0-1}$, and a nonasymptotic framework for establishing generalization of networks trained in the NTK regime with structured data. The proof makes heavy use of martingale concentration to optimally treat statistical dependencies across layers of the initial random network. This approach should be of use in establishing similar results for other network architectures.


Beyond Signal Propagation: Is Feature Diversity Necessary in Deep Neural Network Initialization?

arXiv.org Machine Learning

Deep neural networks are typically initialized with random weights, with variances chosen to facilitate signal propagation and stable gradients. It is also believed that diversity of features is an important property of these initializations. We construct a deep convolutional network with identical features by initializing almost all the weights to $0$. The architecture also enables perfect signal propagation and stable gradients, and achieves high accuracy on standard benchmarks. This indicates that random, diverse initializations are \textit{not} necessary for training neural networks. An essential element in training this network is a mechanism of symmetry breaking; we study this phenomenon and find that standard GPU operations, which are non-deterministic, can serve as a sufficient source of symmetry breaking to enable training.


Wider Networks Learn Better Features

arXiv.org Machine Learning

While the process of feature learning by deep neural networks is still poorly understood, numerous techniques have been developed for visualizing these features in trained networks in an attempt to better understand the learning process [10, 29, 26, 21]. This is usually achieved by optimizing over the input space in order to maximize the activation of a single neuron or filter, with appropriate regularization. These techniques are commonly applied to pre-trained state-of-the-art models, yet they can also be used to explore the effects of various architectural choices on the learned representations. In this work, we specifically investigate the effect of the number of neurons on the quality of the learned representations. It has been shown that increasing the width of a neural network will generally not affect performance on a given task or even improve it [23, 13], and it is natural to study the effect of this modification on the learned representations. We use the recently developed activation atlases technique [3] in order to visualize the inputs that activate an entire hidden state, as opposed to a single neuron. In the case of a wide network, we find that the resulting visualizations differ dramatically. Our main findings are: - As we increase the number of neurons in a network, the features that an individual neuron responds to appear less like natural images. However, there exist directions in the hidden state space that are activated by natural-looking images.


A Mean Field Theory of Quantized Deep Networks: The Quantization-Depth Trade-Off

arXiv.org Machine Learning

Reducing the precision of weights and activation functions in neural network training, with minimal impact on performance, is essential for the deployment of these models in resource-constrained environments. We apply mean-field techniques to networks with quantized activations in order to evaluate the degree to which quantization degrades signal propagation at initialization. We derive initialization schemes which maximize signal propagation in such networks and suggest why this is helpful for generalization. Building on these results, we obtain a closed form implicit equation for $L_{\max}$, the maximal trainable depth (and hence model capacity), given $N$, the number of quantization levels in the activation function. Solving this equation numerically, we obtain asymptotically: $L_{\max}\propto N^{1.82}$.


Dynamical Isometry and a Mean Field Theory of LSTMs and GRUs

arXiv.org Machine Learning

Training recurrent neural networks (RNNs) on long sequence tasks is plagued with difficulties arising from the exponential explosion or vanishing of signals as they propagate forward or backward through the network. Many techniques have been proposed to ameliorate these issues, including various algorithmic and architectural modifications. Two of the most successful RNN architectures, the LSTM and the GRU, do exhibit modest improvements over vanilla RNN cells, but they still suffer from instabilities when trained on very long sequences. In this work, we develop a mean field theory of signal propagation in LSTMs and GRUs that enables us to calculate the time scales for signal propagation as well as the spectral properties of the state-to-state Jacobians. By optimizing these quantities in terms of the initialization hyperparameters, we derive a novel initialization scheme that eliminates or reduces training instabilities. We demonstrate the efficacy of our initialization scheme on multiple sequence tasks, on which it enables successful training while a standard initialization either fails completely or is orders of magnitude slower. We also observe a beneficial effect on generalization performance using this new initialization.