Giguere, Stephen
Automated Discovery of Functional Actual Causes in Complex Environments
Chuck, Caleb, Vaidyanathan, Sankaran, Giguere, Stephen, Zhang, Amy, Jensen, David, Niekum, Scott
Reinforcement learning (RL) algorithms often struggle to learn policies that generalize to novel situations due to issues such as causal confusion, overfitting to irrelevant factors, and failure to isolate control of state factors. These issues stem from a common source: a failure to accurately identify and exploit state-specific causal relationships in the environment. While some prior works in RL aim to identify these relationships explicitly, they rely on informal domain-specific heuristics such as spatial and temporal proximity. Actual causality offers a principled and general framework for determining the causes of particular events. However, existing definitions of actual cause often attribute causality to a large number of events, even if many of them rarely influence the outcome. Prior work on actual causality proposes normality as a solution to this problem, but its existing implementations are challenging to scale to complex and continuous-valued RL environments. This paper introduces functional actual cause (FAC), a framework that uses context-specific independencies in the environment to restrict the set of actual causes. We additionally introduce Joint Optimization for Actual Cause Inference (JACI), an algorithm that learns from observational data to infer functional actual causes. We demonstrate empirically that FAC agrees with known results on a suite of examples from the actual causality literature, and JACI identifies actual causes with significantly higher accuracy than existing heuristic methods in a set of complex, continuous-valued environments.
Distributional Depth-Based Estimation of Object Articulation Models
Jain, Ajinkya, Giguere, Stephen, Lioutikov, Rudolf, Niekum, Scott
We propose a method that efficiently learns distributions over articulation model parameters directly from depth images without the need to know articulation model categories a priori. By contrast, existing methods that learn articulation models from raw observations typically only predict point estimates of the model parameters, which are insufficient to guarantee the safe manipulation of articulated objects. Our core contributions include a novel representation for distributions over rigid body transformations and articulation model parameters based on screw theory, von Mises-Fisher distributions, and Stiefel manifolds. Combining these concepts allows for an efficient, mathematically sound representation that implicitly satisfies the constraints that rigid body transformations and articulations must adhere to. Leveraging this representation, we introduce a novel deep learning based approach, DUST-net, that performs category-independent articulation model estimation while also providing model uncertainties. We evaluate our approach on several benchmarking datasets and real-world objects and compare its performance with two current state-of-the-art methods. Our results demonstrate that DUST-net can successfully learn distributions over articulation models for novel objects across articulation model categories, which generate point estimates with better accuracy than state-of-the-art methods and effectively capture the uncertainty over predicted model parameters due to noisy inputs.
Projected Natural Actor-Critic
Thomas, Philip S., Dabney, William C., Giguere, Stephen, Mahadevan, Sridhar
Natural actor-critics are a popular class of policy search algorithms for finding locally optimal policies for Markov decision processes. In this paper we address a drawback of natural actor-critics that limits their real-world applicability - their lack of safety guarantees. We present a principled algorithm for performing natural gradient descent over a constrained domain. In the context of reinforcement learning, this allows for natural actor-critic algorithms that are guaranteed to remain within a known safe region of policy space. While deriving our class of constrained natural actor-critic algorithms, which we call Projected Natural Actor-Critics (PNACs), we also elucidate the relationship between natural gradient descent and mirror descent.
Basis Adaptation for Sparse Nonlinear Reinforcement Learning
Mahadevan, Sridhar (University of Massachusetts, Amherst) | Giguere, Stephen (University of Massachusetts, Amherst) | Jacek, Nicholas (University of Massachusetts, Amherst)
This paper presents a new approach to representation discovery in reinforcement learning (RL) using basis adaptation. We introduce a general framework for basis adaptation as {\em nonlinear separable least-squares value function approximation} based on finding Frechet gradients of an error function using variable projection functionals. We then present a scalable proximal gradient-based approach for basis adaptation using the recently proposed mirror-descent framework for RL. Unlike traditional temporal-difference (TD) methods for RL, mirror descent based RL methods undertake proximal gradient updates of weights in a dual space, which is linked together with the primal space using a Legendre transform involving the gradient of a strongly convex function. Mirror descent RL can be viewed as a proximal TD algorithm using Bregman divergence as the distance generating function. We present a new class of regularized proximal-gradient based TD methods, which combine feature selection through sparse L1 regularization and basis adaptation. Experimental results are provided to illustrate and validate the approach.