Goto

Collaborating Authors

 Gigant, Théo


Mitigating the Impact of Reference Quality on Evaluation of Summarization Systems with Reference-Free Metrics

arXiv.org Artificial Intelligence

Automatic metrics are used as proxies to evaluate abstractive summarization systems when human annotations are too expensive. To be useful, these metrics should be fine-grained, show a high correlation with human annotations, and ideally be independent of reference quality; however, most standard evaluation metrics for summarization are reference-based, and existing reference-free metrics correlate poorly with relevance, especially on summaries of longer documents. In this paper, we introduce a reference-free metric that correlates well with human evaluated relevance, while being very cheap to compute. We show that this metric can also be used alongside reference-based metrics to improve their robustness in low quality reference settings.


BLOOM: A 176B-Parameter Open-Access Multilingual Language Model

arXiv.org Artificial Intelligence

Large language models (LLMs) have been shown to be able to perform new tasks based on a few demonstrations or natural language instructions. While these capabilities have led to widespread adoption, most LLMs are developed by resource-rich organizations and are frequently kept from the public. As a step towards democratizing this powerful technology, we present BLOOM, a 176B-parameter open-access language model designed and built thanks to a collaboration of hundreds of researchers. BLOOM is a decoder-only Transformer language model that was trained on the ROOTS corpus, a dataset comprising hundreds of sources in 46 natural and 13 programming languages (59 in total). We find that BLOOM achieves competitive performance on a wide variety of benchmarks, with stronger results after undergoing multitask prompted finetuning. To facilitate future research and applications using LLMs, we publicly release our models and code under the Responsible AI License.