Goto

Collaborating Authors

 Giesselbach, Sven


Foundation Models for Natural Language Processing -- Pre-trained Language Models Integrating Media

arXiv.org Artificial Intelligence

This open access book provides a comprehensive overview of the state of the art in research and applications of Foundation Models and is intended for readers familiar with basic Natural Language Processing (NLP) concepts. Over the recent years, a revolutionary new paradigm has been developed for training models for NLP. These models are first pre-trained on large collections of text documents to acquire general syntactic knowledge and semantic information. Then, they are fine-tuned for specific tasks, which they can often solve with superhuman accuracy. When the models are large enough, they can be instructed by prompts to solve new tasks without any fine-tuning. Moreover, they can be applied to a wide range of different media and problem domains, ranging from image and video processing to robot control learning. Because they provide a blueprint for solving many tasks in artificial intelligence, they have been called Foundation Models. After a brief introduction to basic NLP models the main pre-trained language models BERT, GPT and sequence-to-sequence transformer are described, as well as the concepts of self-attention and context-sensitive embedding. Then, different approaches to improving these models are discussed, such as expanding the pre-training criteria, increasing the length of input texts, or including extra knowledge. An overview of the best-performing models for about twenty application areas is then presented, e.g., question answering, translation, story generation, dialog systems, generating images from text, etc. For each application area, the strengths and weaknesses of current models are discussed, and an outlook on further developments is given. In addition, links are provided to freely available program code. A concluding chapter summarizes the economic opportunities, mitigation of risks, and potential developments of AI.


Making Efficient Use of a Domain Expert's Time in Relation Extraction

arXiv.org Machine Learning

Scarcity of labeled data is one of the most frequent problems faced in machine learning. This is particularly true in relation extraction in text mining, where large corpora of texts exists in many application domains, while labeling of text data requires an expert to invest much time to read the documents. Overall, state-of-the art models, like the convolutional neural network used in this paper, achieve great results when trained on large enough amounts of labeled data. However, from a practical point of view the question arises whether this is the most efficient approach when one takes the manual effort of the expert into account. In this paper, we report on an alternative approach where we first construct a relation extraction model using distant supervision, and only later make use of a domain expert to refine the results. Distant supervision provides a mean of labeling data given known relations in a knowledge base, but it suffers from noisy labeling. We introduce an active learning based extension, that allows our neural network to incorporate expert feedback and report on first results on a complex data set.